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Organization

Statistical Mechanics & Simulations

« Statistical Mechanics & Simulations »

Where ?       Here… A10 – Lavoisier 

What ?         Course, without overdoing things…

Practice : a lot...

Examination : Final exam (3h) x 0.7 (and 2d chance)

Intermediate x 0.3 (0.15 + 0.15) (definitive)

Course materials :  http://theo.ism.u-bordeaux.fr/J-C.Soetens/teach.html

J-C. Soetens (U Bordeaux )

http://theo.ism.u-bordeaux.fr/J-C.Soetens/teach.html
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Aims of this course

Statistical Mechanics & Simulations

The purpose of this course : « Statistical Mechanics & Simulations »

To become familiar with the basics concepts underlying molecular simulations

To understand the possibilities and limitations of (present day) simulations

To understand the machinary of the two main methods : 

Molecular Dynamics simulations

Monte Carlo simulations

 To be able to understand a scientific article dealing with molecular simulation and to discuss 

with experts in the field

To give you some ideas on how to start your own studies

To become familiar with a numerical scientific environment

(software, programming, graphics, etc)

J-C. Soetens (U Bordeaux )
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Summary

PART I   :    « Statistical Mechanics & Simulations »

I. Overview of Statistical Mechanics & Molecular Simulations

II. Molecular Dynamics Simulations

III. Monte Carlo methods

IV. « Outputs » : extracting properties from simulations

V. Initiation to statistical thermodynamics

J-C. Soetens (U Bordeaux )



Statistical Mechanics & Simulations 5Academic year 2024-2025 5

Summary

J-C. Soetens (U Bordeaux )

PART II   :« Force Fields & Molecular Interactions »

I. Recalling basic ideas about statistical mechanics

II. General ideas about interaction models

III. The nature of intermolecular forces

IV. Representation of the intermolecular potential energy function

V. Strategies to get a model potential for simulations

VI. Beyond the pair potential approximation
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Summary

J-C. Soetens (U Bordeaux )

PRACTICE

« Classic part »

Objectives
Protocols
Calculations
Analyzes
…

P5-A) Oral presentation

(intermediate x 0.15)

P5-B) Unix, Fortran langage

Gnuplot, VMD, etc.

(intermediate x 0.15)

« Personal part »
From scratch

« Tools »
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Summary

J-C. Soetens (U Bordeaux )

Course materials :  http://theo.ism.u-bordeaux.fr/J-C.Soetens/teach.html

http://theo.ism.u-bordeaux.fr/J-C.Soetens/teach.html
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I. Overview of Statistical Mechanics & Molecular Simulations

Statistical Mechanics & Simulations

Test of simulation models

Test of approximate theories

Test and/or interpretation of experiments

Simulations       of      Molecular Systems ?

simulation approach specific strategies

Real system

Experiments

Model system

Simulations

Observable A

Observable B

Observable C

Observable D

Observable E

Observable F

Observable G

…

Study of systems at extreme conditions

(high temperatures or pressures)

Time and space resolution inaccessible  to experiment

Cheap ? (Moor’s law)







J-C. Soetens (U Bordeaux )



9Academic year 2024-2025 9Statistical Mechanics & Simulations

 Meteorology, climatology, Earth Sciences

Measure warming and climate change

Anticipate weather events

 Astrophysics, particle physics and plasma physics

Understand the evolution of galaxies

Explore quantum theories (QCD, ITER)

 Materials science, chemistry, nanoscience

Development of smart materials

Better understanding of the properties

 Life Sciences, human sciences

Exploring biological systems, brain

Develop targeted drug molecules

 Engineering

 Etc…

Some words about « simulations »

I. Overview of Statistical Mechanics & Molecular Simulations

J-C. Soetens (U Bordeaux )
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Time and length scales

Macroscale

Time > s
Lengthscale > 1 μm

Mesoscale

Time : ns – ms

Lenghtscale :10-10000 nm 

Nanoscale

Time : fs – ns

Lengthscale : 0.1 – 10 nm

Subatomic scale

Electronic structure

Accuracy

of methods

Computer

time

ab initio

Electrons

Potentiel Energy Surface

Phase space

Statistics

Free energy, entropy

Molecular Dynamics, Monte Carlo

I. Overview of Statistical Mechanics & Molecular Simulations

J-C. Soetens (U Bordeaux )
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I. Overview of Statistical Mechanics & Molecular Simulations

J-C. Soetens (U Bordeaux )

The purpose of this course : « Statistical Mechanics & Simulations »

To become familiar with the basics concepts underlying molecular simulations

To understand the possibilities and limitations of (present day) simulations

To understand the machinary of the two main methods : 

Molecular Dynamics simulations

Monte Carlo simulations

 To be able to understand a scientific article dealing with molecular simulation and 

to discuss with experts in the field

To give you some ideas on how to start your own studies

To become familiar with a numerical scientific environment

(software, programming, graphics, etc)
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I. Overview of Statistical Mechanics & Molecular Simulations

J-C. Soetens (U Bordeaux )

Exercise : let's look at a typical molecular simulation article in physical chemistry to

see what we need to learn before understanding such an article !? 
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One Macroscopic state      Many compatible microscopic states 

Macroscopic point of view

Real system

NA molecules or particles

described by few variables 

such as N, V, p, T…

Microscopic point of view

Model system

classical → microstates

 for a classical system of N particles at time t :

 to compute the thermodynamic average of a quantity

with

we thus have to know for each point of the phase space :

value of the property in the microstate 

weight (probability) of the microstate 

« Simulations » in chemical physics

I. Overview of Statistical Mechanics & Molecular Simulations

J-C. Soetens (U Bordeaux )
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Application:

system of 36 water molecules ↔ 108 atoms

7 spatial coordinates considered for each atom : 

- original position  (xo, yo, zo)

- 2 moves in each of the 3 directions  (xo δ, yo  δ, zo  δ)

→ Total computer time   =

Laptop Supercomputer (1.5 million processors ) →

Quizz : 1 day on this supercomputer ↔ how many H2O ? →

→  Nb of configurations = 

Microscopic point of view : how many compatible microscopic states ?

Answer :

 Generate all corresponding configurations Ci

 Compute each A(Ci) and W(Ci)

 Result : <A> 

Work to do :

remember :

 Generate all corresponding configurations Ci

 Compute each A(Ci) and W(Ci) 

(potential energy function for example, 1 ns on a laptop)

 Result : <A>

?

?

?

?  molecules

I. Overview of Statistical Mechanics & Molecular Simulations

Question : computer time necessary to do this work ?

J-C. Soetens (U Bordeaux )
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Summary up to there

We cannot use, for practical reasons, the formulae that we find in statistical   

mechanics  textbooks in a straightforward manner to compute averages.

What we need / what we can do :

1- to construct a list of microstates compatible with the macrostate we 

are interesting in.

2- to compute the properties for each element of the list.

3- to take the averages over the ensemble of elements.

Warning : this list will always be finite !

I. Overview of Statistical Mechanics & Molecular Simulations

J-C. Soetens (U Bordeaux )
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How to generate the microstates efficiently ?  

SOLUTION  =  SIMULATION

Simulations  =  Methods to explore the dominant regions of the phase space

=  Methods to generate the dominant contributions to the integral

Real condensed phase ?

- phase space 

- large number of molecules

- complex potential energy functions

“Brute force” approach is infeasible

and

Extremely inefficient

we know only at the end which microstates 

contribute to the integral

Take home message…

I. Overview of Statistical Mechanics & Molecular Simulations

J-C. Soetens (U Bordeaux )
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Classical system of N particles at time t :

Phase space : 

I. Overview of Statistical Mechanics & Molecular Simulations

J-C. Soetens (U Bordeaux )
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Exploration of the dominant regions of the phase space :

I. Overview of Statistical Mechanics & Molecular Simulations

J-C. Soetens (U Bordeaux )
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Finite sample of microstates:

I. Overview of Statistical Mechanics & Molecular Simulations

J-C. Soetens (U Bordeaux )
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Simulation approach :

 Construct a finite list of microscopic states which are representative and compatible

with some set of macroscopic variables (T, P, ρ…)

Ensemble of N microstates  

Representative ?

Molecular Dynamics

 list of Pi in Phase space (r,v) and ordered in time

Monte Carlo

 list of Ci in Configuration space (r)

I. Overview of Statistical Mechanics & Molecular Simulations

J-C. Soetens (U Bordeaux )
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Molecular Dynamics : MD Monte Carlo : MC

Generates Ps characterized by :

This ensemble is known as the NVE ensemble
(microcanonic ensemble of statistical mechanics)

Added values

MD generates the Ps in a meaningful order

The order parameter is the time, t

Consequences

MD generates a trajectory

MD allow to compute dynamical properties

Generates only the position part of the Ps 

(Cs) characterized by :

- Constant number of particules, N

- Constant volume, V

- Constant total energy, E

- Constant number of particules, N

- Constant volume, V

- Constant temperature, T

This ensemble is known as the NVT ensemble 
(canonic ensemble of statistical mechanics)

MC generates the Cs in a random order

Consequences

No trajectories, just a package of Cs

Dynamical properties inaccessible

I. Overview of Statistical Mechanics & Molecular Simulations

J-C. Soetens (U Bordeaux )
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Model

MD or MC

Ensemble

Pi or Ci

Properties

Properties

Precision Computers

Definition of the system

Thermodynamics conditions

Interaction model

The machinery :

Many technical details :

Simulation box

Periodic boundary conditions

Minimim image convention

Long range interactions

Thermodynamics ensemble

etc. 
T, P

I. Overview of Statistical Mechanics & Molecular Simulations

J-C. Soetens (U Bordeaux )
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Molecular Dynamics

 list of Pi in Phase space (r,v) and ordered in time

Monte Carlo

 list of Ci in Configuration space (r)

The model is the crucial input of a simulation

« Model » is a complex concept… it includes the technical details
of the simulation and the interaction potential.

But, when everything is done, every success or failure of the 
simulation is ascribable to a success or a failure of the model.

I. Overview of Statistical Mechanics & Molecular Simulations

J-C. Soetens (U Bordeaux )
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I. Overview of Statistical Mechanics & Molecular Simulations

Statistical Mechanics & Simulations

Interaction

Models

Classical

models

Quantum

chemistry

Hybrid

methods

Quantum part 

Classical part 

=
+

+
New problems…

Necessary condition to perform simulation : Interaction potential 

Classical models

- « Simple » and cheap : large systems, many

degrees of freedom, large timescales.

- Can be refined by including additional terms

(polarization, cross intramolecular terms, …).

Misery of empirical force fields:

- Difficult to choose an available model.

- No bond making/breaking – no chemistry !

- Difficult to improve in a systematic way.

- The development of original models is a

science in itself.

Potentials and forces from 

quantum chemistry

- Price of dramatically increased computational

costs: much smaller systems and timescales.

- Constructing the whole potential energy surface in

advance: exponential dimensionality bottleneck,

possibly only for very small systems (< 5 atoms).

- Alternative: on-the-fly potentials constructed

along the molecular dynamics trajectory.

Programs for AIMD :

CPMD, CP2K, VASP, NWChem, CASTEP,

CP-PAW, fhi98md,…

Many simplifications  and 

approximations are necessary 

J-C. Soetens (U Bordeaux )
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A multidimensional function is still too complex.

The pair potential approximation consists to developp this function over monomers and pair of molecules :

Intramolecular

part 

Intermolecular

part

Flexible 

model

Rigid 

Model

If = 0

Effective 

model 

ab initio 

model

empirical

model

The pair potential approximation is a 

very drastic ssumption

Three body term

Beyond the pair potential approximation ?

and / or 

N - body term

Explicit polarizabilities

Classical models

I. Overview of Statistical Mechanics & Molecular Simulations

Statistical Mechanics & SimulationsJ-C. Soetens (U Bordeaux )
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Choice of a 

potential model

Some specific models 

exist in literature
No available model

in literature 

Development of a 

new specific model

- Complex

- Time consuming

Transfer of parameters 

from  analogous systems ?

- Dangerous approach !

- Verifications ?

- Modifications 

Force Fields

- Freeware ?

- Commercial ?

- Computable properties ?

Specific models

- Charasteristics ?

- Quality ?

- Time consuming ?

- Available in codes ?

Strategies to get a model 

potential for simulations

I. Overview of Statistical Mechanics & Molecular Simulations

Statistical Mechanics & SimulationsJ-C. Soetens (U Bordeaux )
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Just for water (H2O), there are probably about 50

reasonably good, but quite different models in the

literature. They are known by acronyms like BNS,

ST2, MCY, TIPS, TIP3P, TIP4P, CF2, CF3, BJH,

SPC, SPC/E, etc. etc. etc

Empirical models : tuned to get certain properties right

ab initio models : fitted from quantum chemistry

H2O

Molecular dipoles : changing or not (flexible, polarizable)

Rigid models

Flexible models

B. Guillot, Journal of Molecular Liquids 101, 219 (2002)

Polarizable models

Effective models

Example of liquid WATER

Why so many?

Are you lucky ?

I. Overview of Statistical Mechanics & Molecular Simulations

Statistical Mechanics & SimulationsJ-C. Soetens (U Bordeaux )
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Choice of a 

potential model

Some specific models 

exist in literature
No available model

in literature 

Development of a 

new specific model

- Complex

- Time consuming

Transfer of parameters 

from  analogous systems ?

- Dangerous approach !

- Verifications ?

- Modifications 

Force Fields

- Freeware ?

- Commercial ?

- Computable properties ?

Specific models

- Charasteristics ?

- Quality ?

- Time consuming ?

- Available in codes ?

Strategies to get a model 

potential for simulations

I. Overview of Statistical Mechanics & Molecular Simulations

Statistical Mechanics & SimulationsJ-C. Soetens (U Bordeaux )
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Whatever the number of reasons, the question is : how to make a model ?

1. select sites, decide if you need a rigid or a flexible model.

2. be as smart as you can and invent a good (whatever that means) functional 

form for V with free parameters.

3. determine the free parameters by fitting the V-functions.

- do quantum mechanical calculations on a small number of molecules (2, maybe 3 or 4) 

for as many relative geometries as possible.

- empirically using simulations

4. test, improve, work hard (sometimes back to step 1 or 2 or 3…), ...., try & error procedures…

Conclusion: the development of models is a science in itself.

You want to study a system by the use of molecular simulations but :

- you cannot find a (good) model potential.

- you are not confident in the use of parameters coming from analogous systems.

- you are interested in the challenging task that consists in the development of an original model.

I. Overview of Statistical Mechanics & Molecular Simulations

Statistical Mechanics & SimulationsJ-C. Soetens (U Bordeaux )
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Development of 

a new potential model

Nature of the model

All atoms, unified atoms, 

Flexible or rigid model

Electrostatic model

-Model derived from electrostatic 

properties of single molecule.

Mathematical expression for the potential 

energy function

“Use the right level of description to catch the 

phenomena of interest…”

Empirical model

Fit the parameters through 

simulations (MD or MC) of some 

experimental  properties 

Ab initiol model

Fit the parameters through 

QM calculations

- Geometry

- Frequencies

- PES of dimers, trimers…

,                     ,             

Fit of the rest (non electrostatic) 

of the potential energy

I. Overview of Statistical Mechanics & Molecular Simulations

Statistical Mechanics & Simulations

The development of models 

is a science in itself !

J-C. Soetens (U Bordeaux )
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Historical perspectives on molecular simulations…

60 years ago : first Monte Carlo simulation (1953)

MANIAC

Mathematical Analyzer, 

Numerical Integrator, 

and Computer

Mars 1952

Los Alamos

1 KOPS

I. Overview of Statistical Mechanics & Molecular Simulations

J-C. Soetens (U Bordeaux )
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Historical perspectives on molecular simulations…

First MC simulation (1953)

MANIAC

Mathematical Analyzer, 

Numerical Integrator, 

and Computer

Mars 1952

Los Alamos

1 KOPS

I. Overview of Statistical Mechanics & Molecular Simulations

J-C. Soetens (U Bordeaux )
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Historical perspectives on molecular simulations…

solid phase liquid phase liquid-vapour-phase

Hard disks and spheres

32 particules 7000 collisions / hcpu

500 particules 500 collisions / hcpu

IBM-704

Production run ~20000 steps 
N=32    6.5 x105 coll.  4 days

N=500   107 coll.      2.3 years

First Molecular Dynamics simulation (1959)

ij

rij

I. Overview of Statistical Mechanics & Molecular Simulations

J-C. Soetens (U Bordeaux )
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Historical perspectives on molecular simulations…

First MD simulation with continuous potential (1964)

864 particles

Time step ~ 10 fs
~20000 MD steps, 200 ps (45 s / step)   10 days

(standard PC today : few minutes…)

ij

rij

CDC 3600

Lennard-Jones potential
Thermodynamics Structure Diffusion

I. Overview of Statistical Mechanics & Molecular Simulations

J-C. Soetens (U Bordeaux )
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I. Overview of Statistical Mechanics & Molecular Simulations

Today :

J-C. Soetens (U Bordeaux )

See: https://www.top500.org/lists/top500/

Supercomputer Fugaku (Japan)
Cores : 7,630,848
Memory : 5,087,232 GB
537,212.0 Tflop/s = 5,37 1017 Flop/s

MCIA – Bordeaux (2015)

MANIAC

Mathematical Analyzer, 

Numerical Integrator, 

and Computer

Mars 1952

Los Alamos

1000 OPS

Past :
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I. Overview of Statistical Mechanics & Molecular Simulations

J-C. Soetens (U Bordeaux )

HEWL = Hen egg white lysozyme 

Reproduced with kind permission 
of Prof. Dr. Eckhard Spohr
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I. Overview of Statistical Mechanics & Molecular Simulations

J-C. Soetens (U Bordeaux )

Reproduced with kind permission 
of Prof. Dr. Eckhard Spohr
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I. Overview of Statistical Mechanics & Molecular Simulations

J-C. Soetens (U Bordeaux )

Reproduced with kind permission 
of Prof. Dr. Eckhard Spohr

Nonconvergence issues after 
more than 2 µs of simulation 
(18 months of calculation on 
supercomputer magnitude )



39Academic year 2024-2025 39Statistical Mechanics & Simulations

Simulations…?

 Real condensed phase : phases space → infinity

 It is impossible to know exhaustively the PES (Potential Energy Surface)

 Solution = exploration of the « interesting part » of the PES during the simulation

 By the way… collection and average over the generated states :

Model system

particules + interaction potential

Simulation

conditions + computation + analyzes

In practical

I. Overview of Statistical Mechanics & Molecular Simulations

J-C. Soetens (U Bordeaux )
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Summary

« Statistical Mechanics & Simulations »

I. Overview of Statistical Mechanics & Molecular Simulations

II. Molecular Dynamics Simulations

III. Monte Carlo methods

IV. « Outputs » : extracting properties from simulations

V. Initiation to statistical thermodynamics

J-C. Soetens (U Bordeaux )
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II. Molecular Dynamics Simulations

Molecular Dynamics

Making the sample : model the motion of some group of particules

The result is a trajectory : collection of phase point P(t) which contain positions and velocities

of all particules of the system.

- Let us assume that we know one phase space point P compatible with the macrostate we are interested in.

The goal

The method

- Let us assume that our particules are heavy enough and/or the temperature high enough, so that the

particles De Broglie wavelength is small compared with the distances between particules.

- We can replace the time dependant Schrodinger equation for the particle motions by Newton’s equation.

- We know the Hamiltonian for the whole things, it contains the kinetic energy and a potential energy based

on a chosen model.

J-C. Soetens (U Bordeaux )



Answer :   yes we can !

we know how to compute the total energy E of P(t0) :

P(t0) contains all velocities so we can compute the kinetic energy T

P(t0) contains all positions so we can compute the potential energy V                    
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II. Molecular Dynamics Simulations

- Let us consider a system of  N particles restricted in a volume V

i.e. P(t0) which correspond to some macrostate

Question : can we characterize this macrostate ?

P(t0) is thus characterized by the values N,V and E

The N Newton’s equations for all particules in the configuration P(t0) are :

If we can solve this N 2d order differential equations, then we could get after some time δt

a new configuration P(t0 + δt).

J-C. Soetens (U Bordeaux )
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II. Molecular Dynamics Simulations

So we have now : 

P(t0) characterized by  

N

V

E

P(t0 + δt)  characterized by  

N, because Newton’s equation do not 

change the particle numbers

V, because the particules are restricted

to this volume

E, because the total energy is constant 

for an isolated system

Thus : 

If    P(t0)          is a microstate belonging to a 

certain macrostate

P(t0 + δt)   is also a microstate belonging

to the same macrostate

Work flow of an MD simulation

Model :   nature and number of particules
thermodynamics conditions
interaction potential…

P(t0)

P(t0+δt)

Get energy and forces
Solve equations of motions

Observables

Sample

of 

ensemble

Averages

of 

properties

J-C. Soetens (U Bordeaux )
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II. Molecular Dynamics Simulations

Model :   nature and number of particules
thermodynamics conditions
interaction potential…

P(t0)

P(t0+δt)

Get energy and forces
Solve equations of motions

Observables

Many questions arise :

(a) How to deal with volume restriction

(b) How to deal with the integration of Newton’s equation

(c) How to chose the time step δt

(d) How to find P(t0)

(e) How to control a thermodynamic ensemble

etc.

J-C. Soetens (U Bordeaux )
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II. Molecular Dynamics Simulations

Answer :  use of Periodic Boundary Conditions (PBC)

combined with the Minimum Distance Convention (MDC)

Question (a) : how to make sure that the particules are always restricted to the volume

Basic box

Periodic boxes = mirror of basic box

Minimum Distance Convention

Cut-off sphere

Some general comments : 

Our spatial scales are limited ! 

Solutions :

No boundaries

ex. droplet of liquid, molecules in vacuum

Fixed boundaries

make use of a sacrificial region

not really physical, not really efficient

Periodic boundaries

This is the most widely used solution

J-C. Soetens (U Bordeaux )
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II. Molecular Dynamics Simulations

Answer :  use of Periodic Boundary Conditions (PBC)

combined with the Minimum Distance Convention (MDC)

Question (a) : how to make sure that the particules are always restricted to the volume

Basic box

Periodic boxes = mirror of basic box

Minimum Distance Convention

Cut-off sphereParticules crossing a boundary of the simulation

box emerge back from the opposite side.

There will always be N particules in the basic box.

It allows to simulate an « infinite » system (or « continous » 

System) with a finite number of particules.

There is no surface at the limit of the basic box.

Cut-off  : no direct interactions beyond a certain distance

Unphysical.

Discontinuities.

Artefacts…

Some methods exists to

avoid this problem.

J-C. Soetens (U Bordeaux )
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II. Molecular Dynamics Simulations

Answer : do a numerical solution, i.e. a numerical integration.

Question (b) : how to deal with the integration of Newton’s equation

But these N 2d order differential equations are coupled :

There is no analytic solution for this problem.

Recall :

Example of the Verlet algoritm :

J-C. Soetens (U Bordeaux )



bad case          good case
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II. Molecular Dynamics Simulations

Inside  the Verlet algoritm, we see : 

Such a numerical integration consider that the forces acting on particules are constant

during the move : 

Question (c) : how to chose the time step δt 

Answer : this condition is only valid for a small step in space with respect to the intermolecular distances.

What about the step in time : δt ?               

It depends on the time scale of the motions in the system of interest !

 mass, temperature, interaction model…

Application : determination of the time step δt in a system containing vibrating OH group  

T

t T= ???          δt = T / 30 ≈  ???

J-C. Soetens (U Bordeaux )
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II. Molecular Dynamics Simulations

Answer : this figure shows how to proceed to find a P(t0)

Question (d) : how to find P(t0) ?

- our macrostates are characterized by N,V,E being constant.

- however, we usually do not know E for the system we want to study.

V

K

J-C. Soetens (U Bordeaux )
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II. Molecular Dynamics Simulations

Question (e) : How to control a thermodynamic ensemble

Microcanonical: NVE

Canonical NVT

Isotherm-isobar : NPT

Berendsen,  J. Chem. Phys. 81, 3684 (1984)

Nosé-Hoover, Phys. Rev. A 31, 1695 (1985)

Nosé-Andersen, Mol. Phys.  52, 255(1984)

Thermodynamic ensemble

J-C. Soetens (U Bordeaux )
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III. Monte Carlo method

Monte Carlo

Making the sample : create a collection of configurations of some group of particules

The result is a randomly ordered collection of configurations, which contain only positions  of all particules 

of the system.

- Let us assume that we know one configuration compatible with the macrostate we are interested in.

The goal

The method

- We put in the computer N particules in a volume V.

- From the interactions, we can compute the total energy of the system, and thus the energy difference

between two configurations (old and new).

- Let us assume that we know a model.

- The Metropolis algorithm  tell us if the ‘new’ configuration is acceptable.

J-C. Soetens (U Bordeaux )
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III. Monte Carlo method

First MC simulation (1953)
Some details…

1) We know one configuration, call C1, its energy E1.

2) We create randomly a new configuration, call C2.

3) We compute the energy E2 of C2 and ΔE = E2 –E1.

4) We test the sign of ΔE

ΔE ≤ 0, we accept the new configuration :

C2 become C1, go back to 2)

ΔE > 0, we accept the new configuration according to a

probability based on Boltzmann factor :

- if accepted, C2 become C1, go back to step 2)

- if rejected, C2 = C1, go back to step 2)

This kind of ‘random walk’ through the Cs (Markov chain) 

generate a representation of the canonic ensemble. 

J-C. Soetens (U Bordeaux )
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III. Monte Carlo method

New configuration

always accepted

New configuration accepted according to the 

so-called "asymmetric rule"

1) We know one configuration, call C1, its energy E1.

2) We create randomly a new configuration, call C2.

3) We compute the energy E2 of C2 and ΔE = E2 –E1.

4) We test the sign of ΔE

ΔE ≤ 0, we accept the new configuration :

C2 become C1, go back to 2)

ΔE > 0, we accept the new configuration according to a

probability based on Boltzmann factor :

- if accepted, C2 become C1, go back to 2)

- if rejected, C2 = C1, go back to 2)

MC makes use of random numbers

- to choose a particule to move

- to control the displacement

- for the « asymmetric rule »

The parameter α should be adjusted

empirically in such a way that in step 4

approximately one out of two attempted

steps is accepted.

J-C. Soetens (U Bordeaux )
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III. Monte Carlo method

J-C. Soetens (U Bordeaux )

Additional explanations :

The MC algorithm generate a stationary Markovian stochastic sequence which converge to the 
equilibrium configuration.

Stochastic means random process between two configurations i -> j
Markovian means that the probability of the transition i -> j depend only of the configuration i

Evolution equation :

If P(i,s) is the probability for the system to be in configuration i at « step » s, then :

W being the conditional probability of a transition.

This equation of evolution will lead to an equilibrium if 

A solution, call micro reversibility, correspond to 
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III. Monte Carlo method

J-C. Soetens (U Bordeaux )

as 

Proposition of Metropolis et al :

- from a configuration i we choose randomly a configuration j with a probability 
- this new configuration j is accepted with a probability  

Solution of Metropolis
=

Metropolis algorithm

Consequence : the unknown parameters W do not depend of Z but only of the 
Boltzmann factor !
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III. Monte Carlo method

Model :   nature and number of particules
thermodynamics conditions
interaction potential…

C1

C2

Metropolis algoritm

Observables

Not so many questions arise :

(a) How to deal with volume restriction

(b) How to deal with the integration of Newton’s equation

(c) How to chose the time step δt

(d) How to find C1

(e) How to control a thermodynamic

ensemble

etc.

 Same as MD : PBC, MIC…

Nearly the

 same as

MD

J-C. Soetens (U Bordeaux )
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III. General ideas about Molecular Dynamics and Monte Carlo methods

Principle of a simulation (MD or MC) :

In a « good » simulation : the Model should be the only input that matters.

i.e. not the technical details; number of particles (size of te box), how to compute the
(long range) interactions, how to integrate the equations of motion, etc.

Model

J-C. Soetens (U Bordeaux )
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III. General ideas about Molecular Dynamics and Monte Carlo methods

Principle of a simulation (MD or MC) :

History

Configurations

Sample of ensemble

…

Mbytes or Gbytes of 

data

(positions and 

velocities of

all particles at regular

intervals during the 

simulation)

J-C. Soetens (U Bordeaux )
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IV. « Outputs » : extracting properties from simulations

Evaluation of simulations experiments

We now have our sample :

M usually equal 100000 up to several millions…

over the M microstates  

For every quantity A than can be computed from positions (and velocities in MD) of the particules,

we can calculate the thermodynamic average as :

This is the most important formula of this whole simulation business !

A can be a basic thermodynamic observables (such as temperature, internal energy, pressure), a

property describing the structure of the system,… or any other property you might imagine .

J-C. Soetens (U Bordeaux )
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IV. « Outputs » : extracting properties from simulations

Some examples of quantities A :

Internal energy U:

Kinetic energy:

Potential energy :

Temperature :

Pressure :

Virial :

Ideal part Non ideal part ↔ interactions

J-C. Soetens (U Bordeaux )

: number of degrees of freedom of the system
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IV. « Outputs » : extracting properties from simulations

Pair correlation functions, the way to characterize the structure of a disordered systems.

An average of the quantity

represents the probability densitiy of some particle being situated near r  position in each configuration.

The average is thus the mean fluid density at r position :

As the density is a constant in a fluid, we can write the « pair correlation function » (PCF) :

It is the conditional probability density of finding a particle at r, given that there is a particle at the coordinate origin.

In a system containing different type of atoms, there are as many PCF as there are types of pairs :

where N is the number of atoms of type β at a distance between (r) and (r+dr) from an atom of type α

and ρβ the number density of atom β

Structure :

J-C. Soetens (U Bordeaux )
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IV. « Outputs » : extracting properties from simulations

Example of pair correlation function :

only 1 type of atom :

Questions :

(a) What mean these oscillations ? 

(c) Why do it converge to 1 at high value of r ? 

(b) What is the responsible of these oscillations ? 

 a deviation from the mean density

 the interactions between particules

 the normalization (ρ) in the formulae

Calculation principle :

J-C. Soetens (U Bordeaux )



65Academic year 2024-2025 65Statistical Mechanics & Simulations

IV. « Outputs » : extracting properties from simulations

Example of pair correlation functions :

Liquid carbon tetrachloride : CCl4

for a dimer :     1 gCC(r)

8 gCCl(r)

16 gClCl(r)

Running coordination  number :

≈ 13 molecules in the

first shell.

J-C. Soetens (U Bordeaux )
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IV. « Outputs » : extracting properties from simulations

Comparison with experiments : neutron and X-ray diffraction experiments

Liquid carbon tetrachloride : CCl4

J-C. Soetens (U Bordeaux )
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IV. « Outputs » : extracting properties from simulations

Question : when we use the formula 

over the M microstates obtained in a MD simulation  

What did we miss !?!?

Answer : the fact that in MD, the Ps are ordered,

so the fact that they contain the time evolution of the system !

or

over the M microstates obtained in a MC simulation  

We can thus define temporal correlations functions to study the time evolution of any properties

of the system we are interested in.

Of course, this concept is only valid for MD simulations !  

J-C. Soetens (U Bordeaux )
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IV. « Outputs » : extracting properties from simulations

Time auto-correlation function

Method :

- we compute, like before, the quantity we are interested in, A, for each P.

- we relate with each other through an operator  (scalar produc, +,…) the quantities A at two times (τ) and (t+ τ).
- we look at the result as a function of the time delay (t) between both.

- in the equilibrium ensemble, we average over all “initial”  times (τ)  and get the auto-correlation function.

With this concept, we are here leaving the domain of statistical thermodynamics and enter the more general 

domain of statistical mechanics. 

These functions are important objects in statistical mechanics (see e.g. D. McQuarrie's book). In particular,

one shows that:

1) the integrals over these functions are related to the so-called “transport coefficients”. 

The transport coefficient  related to the velocity autocorrelation function  is the self-diffusion coefficient Ds.

2)    the Fourier transforms of these functions are called "spectra". They are not only called spectra, they are  

spectra like the ones measured in Infrared, Raman, neutron inelastic scattering, .... spectroscopies. 

The Fourier transform of the velocity autocorrelation function is related to neutron scattering. 

J-C. Soetens (U Bordeaux )
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IV. « Outputs » : extracting properties from simulations

Example : atomic velocity autocorrelation functions in methanol

MD simulation of a methanol

dimer in a solvent (CCl4). 

Normal mode like combinations

J-C. Soetens (U Bordeaux )



70Academic year 2024-2025 70Statistical Mechanics & Simulations

IV. « Outputs » : extracting properties from simulations

Example : atomic velocity autocorrelation functions in methanol (dimer in CCl4)

Spectral density from the total

velocities of both H atoms

Fourier transforms of the

autocorrelation functions

Qs and Rs

Donor molecule

Acceptor molecule

OH vibration

OH rotation

J-C. Soetens (U Bordeaux )
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IV. « Outputs » : extracting properties from simulations

Generalisation : Time cross-correlation function

Conclusions :

We have two types of averaging procedures over our sample:

(I) We look at one configuration P(t) at a time and average over all configurations.

These averages led to the often called “static properties"

(II) We look at two conguration P(t1) and P(t2) and average over all pairs of configurations which  

have the same spacing in time

These averages led to the often called “dynamic properties”

J-C. Soetens (U Bordeaux )
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