FALL/WNTER TERM 2018 - EXAM

Semestre 9 Code UE: 4TCH914U

Molecular simulations

J-C. Soetens

Date: 15/01/2019 You have 3h

Without documents Number of points: 25/25

A- Potential models (8 points)

The potential energy surface (PES) that describes the interactions between atoms inside molecules (the so-called intramolecular interactions) and between molecules (intermolecular interactions) in condensed phases is (or can be) derived from quantum-chemical calculations of the electronic energies.

Questions:

- A-1) Which approximation(s) must be made to derive such PES?
- A-2) Describe in a few sentences the procedure "how to do it".
- A-3) Which mathematical expression(s) do you know that often describe such PES:
 - for intramolecular interactions?
 - for intermolecular interactions ?

In molecular simulations, the following potential is sometimes used to describe an interaction between two particles : $U(r) = -1/r + 2/r^4$

Questions:

- A-4) Draw approximately the evolution of this potential U(r).
- A-5) Calculate the position and the energy of the minimum of U(r).
- A-6) Give the expression for the force F accompanying this potential as a function of r.
- A-7) Draw the evolution of the force F(r) on the previous plot in A-5). Be rigorous about the positions of the characteristic points.
- A-8) Give the domains in r where this potential is attractive and repulsive

Influence of the description of an interaction model on the computation time.

Questions:

A-9) Describe which and how the various characteristics of classical force fields can have an influence on the computation time in a molecular simulation of a condensed phase.

B- Principles of classical molecular simulations (3 points)

- B-1) What is a 'microstate' in (classical) statistical mechanics?
 - (a) A set given by constant parameters?
 - (b) A point in phase space?
 - (c) A surface in phase space?
 - (d) All accessible points at a given temperature T in phase space?
 - (e) All accessible points at a given total energy E in phase space?

- B-2) Method of Molecular Dynamics: on which principle(s) is based this method. What is the fundamental goal of this method?
- B-3) How the temperature can be controlled in a Molecular Dynamics (MD) simulation?
- B-4) How the temperature can be controlled in a Monte Carlo simulation?
- B-5) What can one obtain from analyzing the particles velocities in an equilibrium MD system (many possible responses) ? Explain...
 - (a) The temperature?
 - (b) An infrared spectrum?
 - (c) The radial distribution functions (rdf) g(r)?
 - (e) The Maxwell-Boltzmann distribution of velocities?
 - (f) The kinetic energy?
 - (g) The intramolecular potential energies?

C- Molecular interactions (2 points)

Some Japanese people studied a few years ago the intermolecular interactions of CHF_3 dimer using ab initio calculations.

7962

J. Phys. Chem. A 2003, 107, 7962-7968

Ab Initio Calculations of Intermolecular Interaction of CHF₃ Dimer: Origin of Attraction and Magnitude of CH/F Interaction

Seiji Tsuzuki,*,[†],§ Tadafumi Uchimaru,[†] Masuhiro Mikami,[†],§ and Shingo Urata[‡]

National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan, and Research Center, Asahi Glass Co., Ltd. (AGC), 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755, Japan

In this paper, we can especially see the following figure which represents the interaction energies of the dimers $A / CH_4 - CH_4$, $B / CHF_3 - CHF_3$ and $C / CF_4 - CF_4$ as a function of the carbon-carbon distance :

and the following table:

dimer	distance $(\mathring{A})^b$	$E_{total}{}^c$	$E_{\mathrm{es}}{}^d$	E_{rep}^{e}	E_{corr}^f
?	3.8	-0.44	0.04	0.24	-0.72
?	4.0	-0.69	0.17	0.36	-1.22
?	4.0	-1.63	-0.94	0.05	-0.74

where the energies are in kcal/mol. E_{total} in the total interaction energy, E_{es} the electrostatic contribution, E_{rep} the repulsion contribution and E_{corr} the electronic correlation contribution. We also know the boiling points of the differents species under 1 bar : 112 K for CH₄, 191 K for CHF₃ and 145 K for CF₄.

Questions:

- C-1) Use these informations to assign the three curves to the three dimers (I mean A, B, C with x, o and \bullet).
- C-2) Explain these results through an analysis of the nature of the intermolecular interactions inside these dimers.

D- Molecular Dynamics simulation of an ionic system (6 points)

We want to simulate an aqueous solution of LiCl. Thus, three species will be present in the system: Li^+ , Cl^- and H2O.

System size

- D-1) We want to build a simulation box with 400 water molecules and 2 pairs LiCl. What should be the dimensions of this box (cubic box) so that the density of the system is 1.05 g/cm³?
- D-2) Calculate the molarity (in mol/l) of this solution?

Structure: the radial distribution functions $g_{ab}(r)$ are used to characterize the structure of disorderd systems.

- D-3) Toward which value do these functions tend at large r? Why?
- D-4) In the present study, how far can these functions be calculated?
- D-5) How many site-site $g_{ab}(r)$ functions must be calculate to fully characterize the structure of the present system? Give a full list of these functions.
- D-6) Draw in particular on a first diagram the appearance of the functions $gOLi^{+}(r)$, $gHLi^{+}(r)$ and on a second diagram the appearance of the functions $gOCl^{-}(r)$, $gHCl^{-}(r)$. Pay a particular attention to the relative positions of the functions according to r.

Data : Molar masses in g/mol : $M_O = 16$, $M_H = 1$, $M_{Li} = 7$ and $M_{Cl} = 35.45$, $N_{avogadro} = 6.02 \cdot 10^{23}$

E- Analyze an article (6 points)

Transfer of the K⁺ Cation Across a Water/Dichloromethane Interface: A Steered Molecular Dynamics Study with Implications in Cation Extraction

Mário Valente, Sérgio Filipe Sousa, A. L. Magalhães,* and Cristina Freire*

REQUIMTE - Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre s/n, 4169-007, Porto, Portugal

Read this article and answer to the following questions:

- E-1) Which program is used?
- E-2) How many and which molecular species constitute the studied systems?
- E-3) Give the useful technical details of the molecular dynamics simulations (ensemble, temperature, cutoff, etc.)
- E-4) Is the potential model used polarizable or nonpolarizable?
- E-5) Why the question of the polarizable or nonpolarizable characteristic of the potential is particularly important for the simulated system in this study?
- E-6) About Figure 4A, the authors write: « (this figure) shows that the cation considerably increases its velocity toward the aqueous phase ca. 10 Å before it reaches the GDS... ».

What do you think of this observation?