
PCCP/M2 Molecular Simulation
4TCH914U

Practice

J-C. Soetens Academic year 2024-2025

jean-christophe.soetens@.u-bordeaux.fr University of Bordeaux

P0: Numerical environment

P1: From statistical mechanics to simulation methods.

P1-A) Ising model
P1-B) The Boltzmann distribution

P2: Molecular Dynamics simulations : how it works ?

P3: Molecular Dynamics simulations : first applications.

P3-A) Liquid water under normal conditions.
P3-B) Aqueous ionic solution.

P4: Molecular interactions.

P4-A) ab initio calculations of electrostatic potential derived charges.
P4-B) Exploration of a PES and fit of an intermolecular interaction model.

P5: To go further...

P5-A) Read, analyze, summarize and present a scientific article.
P5-B) Programming (in Fortran) to develop your own tools.

Annex : Additional materials

Annex-A) ABC of Unix.
Annex-B) Start programming in Fortran.

1

P0: Numerical environment

All practical work will take place on the Poudlard server dedicated to teaching at the regional
computing center (MCIA : Mésocentre de Calcul Intensif Aquitain) hosted on the campus of the
University of Bordeaux.

Address of Poudlard : poudlard.mcia.fr

The cluster can be accessed in two different ways (mainly method 2 in our practical sessions) :

1) To access the cluster’s front-end nodes from a Unix session:
ssh user name@poudlard.mcia.fr

2) Using the web service

https://chemins-de-traverse.mcia.fr
allows users to access Poudlard from a web browser (firefox, chrome, etc.)

The result is a multi-window graphical environment :

2

https://chemins-de-traverse.mcia.fr

The Poudlard cluster is made up of several groups of accessible machines :

2 front-end interactive nodes: machines to which the user connects to develop and launch their work,
manipulate their data and results.

32 Apollo2000 compute nodes: these are the machines on which the jobs are executed (via the Job
Manager). These are machines c001 to c032, each having 32 AMD cores per node and 250 GB of
RAM.

To know more :
https://gazette-du-sorcier.mcia.fr/projects/poudlard/wiki

The Poudlard’s operating system is Unix :
To know more : see Annex-A) ABC of Unix of this document.

Main softwares and utilities used in this course

− Text editors : Mousepad, vi

− Postscript editor : evince

− Fortran compiler : gfortran
See also Annex-B) Start programming in Fortran of this document.

− Command-line driven graphing utility : gnuplot

− Electronic structure modeling :
Gaussian 16 (& graphical interface Gaussview 6)
Ampac (& graphical interface Agui)

− Molecular Dynamics simulation packages :
MDpol (home programm)
Lammps (Large-scale Atomic/Molecular Massively Parallel Simulator.)

3

https://gazette-du-sorcier.mcia.fr/projects/poudlard/wiki

P1: From statistical mechanics to simulation methods.

P1-A) : Ising model

The objective of this part is to use a simple model to illustrate the basic concepts of statistical ther-
modynamics. The Ising Model is thus used to show the limits of a comprehensive approach (”brute
force” approach) and to understand how the simulation allows to push these limits.

Ising model (Ernst Ising 1900-1998)

Example of lattice 8 x 8 Potential energy model :

Partition function :

Computation of a property :

Si = 1 Si = -1

L

L
Work to do

1) ”Brut force” approach : exact results through the partition function

Become familiar with the program and the system

To do : L = 2 and different kT values

kT 1 2 8 20 100 ∞

ELN

< E >

Interpretation:
- Does the number of energy levels change with kT ?
- Does the energy of each level change with kT ?
- What is the weights of the levels when kT → ∞ ?

4

To do : L = 4 and kT=1, 2, 4, 8, 10...
Observe the evolution of the weight of the two lowest energy levels as a function of kT ?

Find the limits

Questions :
- How the computation time evolves according to L ?
- What is the maximum value of L (Lmax) feasible (from computer time point of view) during our
afternoon session ?
- What would be the computation time for a system of size Lmax + 1 ?

The command line ”time ./ising” allow you to know the computer time cost of a calculation.

To do : kT = 4 and different L values

L Total NOS computer time (appropriate unit)

2

3

4

5

6

7

...

5

2) Use of the Monte Carlo method and comparisons with the ”Brut force” approach

- Test whether the Monte Carlo method can reproduce the previous results.

To do : L=3, kT =4 and different numbers of MC steps

What is the number of MC steps necessary to reproduce the ’exact result’ with less than 1 % of error
on the average energy ?

To do : L=4, kT =4 and different numbers of MC steps

What is the number of MC steps necessary to reproduce the ’exact result’ with less than 1 % of error
on the average energy ?

To do : L=5, kT =8 and different numbers of MC steps

- Find the number of MC steps necessary to reproduce the ’exact result’ with less than 1 % of error
on the average energy.

- Compare the computation time of the two methods.

3) To infinity... and beyond !

To do : treat the case (Lmax+ 1) using the MC method solely...

P1-B) : the Boltzmann distribution

6

P2: Molecular Dynamics simulations : how it works ?

The objective of this part is to perform first short molecular dynamics simulations.
The directory P2 contains the following files :

- MD.dat : conditions of the MD simulation.

- bjh.dat : informations on simulated system.

- bjh.ff.dat : informations on simulated system.

- bjh.conf.dat : starting configuration.

- rdf.dat : control of radial distribution functions.

- resume.g : gnuplot script.

Work to do :

1) Note the conditions of the simulation and the nature of the system in editing the file MD.dat and
bjh.dat: thermodynamics conditions, time step, etc.

- What system will you simulate?

- What is the length of the simulation ?

2) Run the simulation using the command "mdstart MD.dat" and observe the creation of new files.

- What are the final and average temperatures of the simulation ?

- Same question for the potential energy ?

- What is the CPU computation time (in seconds) of the simulation? (This information appears
in the file nohup.out).

- Run the command "gnuplot resume.g" and view the postscript file produced using the com-
mand "evince resume.ps". How to interpret the variations of the different energies ? What
information do you get from the examination of the radial distribution functions ?

3) The file traj.xyz contains the positions of the atoms recorded every 50 time step, i.e. the
trajectory of the system. Visualize this trajectory using the software vmd.

- Observe the nouvements of each molecule. One of them has a dynamic radically different from
the other Which one ? Is there an obvious reason ?

7

P3: Molecular Dynamics simulations : first applications.

P3-A) Simulation of liquid water.

- Read the files present in the directory P3A and note all relevant informations on the simulation.

- Calculate the density of the system based on the number of molecules and the size of the
simulation box.

- Start the calculation (command "mdstart MD.dat") and wait the end of the simulation...
Compare the CPU time of the simulation with the one observed in the previous part.

- Run the command "gnuplot resume.g" and view the postscript file produced using the com-
mand "evince resume.ps". Observe the change of the internal energy versus time. What
may be the reason for such a change ?

- Interpret the radial distribution functions.

- Display some configurations (software vmd).

P3-B) Simulation of an aqueous ionic solution.

- Read the files present in the directory P3B and note all relevant information on the simulation.

- Calculate the molar concentrations of ions Na+ and Cl−.

- Start the calculation (command "mdstart MD.dat").

- Run the command "gnuplot resume.g " and view the postscript file produced using the
"evince resume.ps".

- Explain the differences between the potential energies average of the different species.

- Observe the radial distribution functions. How to justify the noisy appearance of the water-ion
and ion-ion functions compared to those of water-water ?

- How are the orientations of the water molecules around the ions ? Check your analysis by
viewing some configurations.

- Conclude on the solvation of NaCl in water.

8

P4: Molecular interactions

P4-A) ab initio calculations of potential derived charges.

The objective of this part is to use standard and simple ab initio calculations to get informations on
electrostatic properties of simple molecules.

Work to do

- Use the Gaussian09 program to complete the tables on the following two pages.

9

Ele
ctro

static p
ro

p
e

rtie
s o

f th
e

 w
ate

r m
o

le
cu

le

#p
 H

F/3
-2

1
G

 o
p

t=Z-m
atrix

 gfin
p

u
t IO

P
(6

/7
=3

)

#p
 H

F/3
-2

1
G

 p
o

p
=C

h
e

lp
G

 gfin
p

u
t IO

P
(6

/7
=3

)

#p
 H

F/3
-2

1
G

 p
o

p
=(C

h
e

lp
G

,d
ip

o
le

)

 gfin
p

u
t IO

P
(6

/7
=3

)

O
H

 b
o

n
d

 (A
)

=
=

H
O

H
 an

gle
 (d

e
gre

e
s)

=
=

En
e

rgy (H
artre

e
)

=
=

SC
F d

ip
o

le
 (D

e
b

ye
)

=
=

P
artial ch

arge
s m

o
d

e
l

M
u

llike
n

C
h

e
lp

G
C

h
e

lp
G

 (co
n

strain
e

d
)

q
O

 (e)

q
H

 (e)

co
rresp

o
n

d
in

g d
ip

o
le (D

eb
ye)

G
au

ssian
 ke

yw
o

rd
s

10

Ele
ctro

static p
ro

p
e

rtie
s o

f th
e

 w
ate

r m
o

le
cu

le

#p
 H

F/6
-3

1
G

** o
p

t=Z-m
atrix

 gfin
p

u
t IO

P
(6

/7
=3

)

#p
 H

F/6
-3

1
G

** p
o

p
=C

h
e

lp
G

 gfin
p

u
t IO

P
(6

/7
=3

)

#p
 H

F/6
-3

1
G

**

p
o

p
=(C

h
e

lp
G

,d
ip

o
le

)

 gfin
p

u
t IO

P
(6

/7
=3

)

O
H

 b
o

n
d

 (A
)

=
=

H
O

H
 an

gle
 (d

e
gre

e
s)

=
=

En
e

rgy (H
artre

e
)

=
=

SC
F d

ip
o

le
 (D

e
b

ye
)

=
=

P
artial ch

arge
s m

o
d

e
l

M
u

llike
n

C
h

e
lp

G
C

h
e

lp
G

 (co
n

strain
e

d
)

q
O

 (e)

q
H

 (e)

co
rresp

o
n

d
in

g d
ip

o
le (D

eb
ye)

G
au

ssian
 ke

yw
o

rd
s

11

P4-B) Exploration of a PES and fit of an intermolecular interaction model.

The objective of this part is to fit a simple interaction model for the HF dimer.

Simple model in the present case means :
- rigid model.
- partial charges on atoms to describe the electrostatic contribution to the interaction potential.
- one Lennard-Jones site at the middle of the bond to describe the repulsion and dispersion contri-
butions to the interaction potential.

Preliminary questions :

- write the mathematical expression corresponding to this interaction model.
- how many unknown parameters ?
- what is the dimensionality of the potential energy surface of the HF dimer ?

Work to do on the monomer HF

all calculation will be done using Gaussian09 at the HF/6-31G** level.

- find the optimized geometry of the HF molecule .
- find the total energy of the HF molecule.
- find the partial charges on H and F using the ChelpG method.

Work to do on the dimer HF

- use Gaussian09 with the ”scan” keyword to explore the following dimer planar geometry (1.8 <
r < 8.0 A).

H F

H

F

r

- edit the gnuplot script file "scan.g" and follow the instructions to fit the parameters of the proposed
interaction potential model.

If you have time, you can do the same job but taking into account the basis set superposition error
(BSSE).

An example of PES of HF dimer can be found in J. Chem. Phys. 1786, 88, 1988.

12

P5: To go further...

P5-A) Read, analyze, summarize and present a scientific article

Rules : you are free to search for an article on a topic that interests you but obviously connected to
this course : molecular simulation (MD or MC) on condensed phases described at the atomic level
(pure liquids, mixtures, ionic solutions, unterfacial systems, solids, etc). I await your proposals for
validation and do not hesitate to interact with me throughout this exercise.

I remind also you that these presentations are graded and will contribute to the overall score with
a coefficient of 0.15. Beyond the quality of the presentations (slides, talk, answers to questions), I
will also take into account the participation of everyone during the discussion by the quality of your
comments and/or questions to your colleagues.

Input : a scientific article on a topic that interests you and obviously connected to this course ! After
approval, you are free to present any paper about molecular simulation you like.

Output : a powerpoint file (around five slides) and a ten-minutes talk in front of the other students.

P5-B) Programming in Fortran to develop your own tools

In concrete terms, such a project consists of studying theoretically the problem to propose an al-
gorithm and define the inputs / outputs (including graphics), program it, test it, and present it to
colleagues.

Below are some examples of possible programming projects. This list is open for discussion according
to your level and your areas of interest. This work will be done alone or in pairs. If necessary,
I will help you to choose your project but in any case we will have an in-depth discussion on the
objectives. I will also help you throughout the project by providing you additional informations.

Bellow some propositions of programming projects :
Programming level : beginner *, advanced **, expert ***, virtuoso ****

• A)* Random walk in 1D (and maybe in 2D **).
The random walk consists of a succession of random steps. It is a famous and ideal system
to understand what is a simulation, the sampling problem and.... an important property in
physics.

Work to do :

– find in the literature what is exactly this model of random walk.

– think about inputs (data) and outputs (results).

– write a code implementing this model.

– calculate various relevant properties and present the results graphically.

13

• B)** Analysis of a MD trajectory.
Given a trajectory obtained by a MD simulation, write a code to read this trajectory and then
calculate some properties. In particular, it is a water / methanol mixture and you will focus
on the characterization of the hydrogen bonds in order to calculate various statistics.

Work to do :

– learn more in the literature on how to characterize hydrogen bonds.

– write a code to read the trajectory file.

– program the calculation of some properties related to hydrogen bonds.

– present some of the results graphically.

• C)** Calculation of the volume of a molecule.
Starting from a molecular geometry calculated using any software (Gaussian, Ampac...), cal-
culate the volume of a molecule represented by van der Waals spheres (you will use the σ
parmeters of the OPLS-AA force field).

Work to do :

– learn more in the literature on how to calculate the volume of secant spheres .

– find an algorithm to do this calculation of volume.

– think about inputs (data) and outputs (results).

– write a code implementing this algorithm.

– calculate the volume of various molecules and present the results graphically.

• D)*** Monte-Carlo simulation of a pure Lennard-Jones fluid.
On the steps of M. Rahman !
(Physical Review, 1964 : liquid Argon T = 87 K, d = 1.38, σ = 3.4 A,ϵ = 1 kJ/mol).

Work to do :

– think about inputs (data) and outputs (results).

– write a code implementing the Monte Carlo algorithm to sample such a system.

– implement the calculation of the rate of accepted/rejected moves.

– implement the calculation of the average energy.

– implement the calculation of the structure of the fluid and compare with the result of 1954
(Rahman, Phys. Rev. 136, 405 (1964)).

• E) Initial configuration for a simulation .
Whatever the simulation method (MD, MC ...) it is necessary to create an initial configuration.
In the case of the study of a disordered condensed phase, it will generally be a cubic box
respecting a given density (and composition in case of mixtures).

This project consists of writing a program generating an initial configuration. You can follow
the following progress :

14

– (difficulty *) system of atoms (van der Waals spheres).

– (difficulty *) molecular liquid (small molecule such as HF, H2O, CH4 ...).

– (difficulty **) mixtures of atoms of several types (mixtures of van der Waals spheres).

(difficulty ***) It is also necessary to ensure that the energy of the configuration is not aberrant,
which could put the simulation in failure after few steps. For example, you can use the Monte
Carlo method and a generic force field to relax the system.

(difficulty ****) At this point you should be able to write a general program capable of gener-
ating any configuration.

• F)**** Monte-Carlo simulation of a binary mixture .
This project can be considered if project D is successful and robust. It consists of studying a
mixture of two species and may help to understand the miscibility of two species (by varying
the ratios of the Lennard-Jones parameters ϵA/ϵB and σA = σB.)

• G) Any (feasible) topic that interests you. To be discussed...

15

Annex A ABC of UNIX

J-C. Soetens

1 Introducing UNIX

Unix was born in 1969 at Bell Laboratories (subsidiary of ATT) under the impetus ok Ken Thompson
and Dennis Ritchie to meet a custom internal. Their objective was to develop a system interactive
operating system for small machines equipped with possibilities comparable to those of large systems.
Unix will then be written in C language (invented by Dennis Ritchie) From 1973, which will therefore
make it portable on a large number of computers.

UNIX is a multi-tasking, multi-user operating system. As an operating system, its main role is
to ensure an optimal distribution of resources (memory, processor (s), disks ...) between the different
tasks of the different users.

The main functions of UNIX are:

• Login and logout: once the administrator of the system has registered a user, the system is in
charge of checking the identity of the user when he wants to connect. A command interpreter
(shell) allowing a dialogue user / system is then automatically activated.

• Resource management of the installation and sharing these resources between users and different
tasks.

• Data management: this consists of the organization, maintenance and access to storage units
(memory, hard disks, magnetic tapes ...)

• Communication between users: this is for example mail électronic or file transfers.

• Programming environment: these are the compilers (C, C ++, Fortran ...), text editors, pro-
gramming assistance tools (debuggers ...).

1.1 Development of a working session

The work session is the time interval between the user login and logout. On connection, the system
will ensure the identity of the user and if it is recognized, a dialog protocol (a shell) will automatically
be established. The disconnection consists in indicating to the operating system that the session of
work is finished.

16

1.2 Connection procedure

It is during this step that the user will have to identify himself from the system. This identification
takes place in the way next :

• Display of the message login: after which you must enter your username (user id or uid).

• Display of the message Password: after which you must enter his password. This is not
displayed while typing for prevent someone else from seeing it.

After connection, various messages from the administration of the system (words of the day, presence
of mail in the box letters, etc ...) are displayed. The user is indeed ready to work when it receives
the system prompt consisting of a marker at the beginning of the line (the prompt). This marker
is variable depending on the machines (ex : $ ou nom machine[numero] > and can be redefining
the user.

1.3 Password change

At the first connection or for safety, the user may have to change his password. This change is made
with the command passwd. You can change your password by first entering the password current
password then twice the new password. Example usage by user ”gromit”:
$ passwd
Changing password for ”gromit”
gromit’s Old password:
gromit’s New password:
Enter the new password again:
If the new password is rejected, the reason may be that the second new password entry (for con-
firmation) was different from the first or, possibly, that the new password does not answer not to
security requirements.

1.4 Logout procedure

This depends on the type of session that has been opened. If a graphical environment (such as the one
created by X Windows, the multi-window environment) is in place, it usually exists a ”logout” menu
(or ”exit”) which allows you to exit this environment and thus to end the work session. Sometimes
also this menu does not allow just quitting the graphical environment. Then you have to proceed to
the disconnection step below. In the absence of a graphical environment, a simple command such as
logout or exit is sufficient to end the working session.

2 Command interpreter

Once logged in, the user can submit commands to the system. Any command entered will be in-
terpreted by the interpreter of commands (or shell). The term shell has been choosen for express
the idea of an interface wrapping the kernel of the system and which establishes a communication
between this kernel and the user.

There are many UNIX command interpreters. The main ones (found on most systems) are the
Bourne-shell (sh), the C-shell (csh), the Korn Shell (ksh) and the T-CShell (tcsh). The choice of the
interpreter activated on connection is made by the administrator of the system upon user registration
and in most cases it this is the C-shell or the Korn-shell.

17

2.1 Command syntax

name command [options] [arguments]

• the separator character between the different elements of the command is blank (Space key
on the keyboard).

• options usually start with the character - (sign minus) followed by one or more key letters.
These options will modify the command behavior. Square brackets around arguments and
options mean that these are optional.

• the arguments specify the objects (files or variables) on which command will apply.

While entering the command, the user can correct his typing using the Delete or Backspace keys.
When the user has when the entry is finished, it submits the command to the system by pressing the
Enter key. Some shells have mechanisms reminder of commands which allow r úse (as is or after
modification) a command previously used.

2.2 Elementary commands

ls get the list of files in the current directory.
ls -l l like long, gives all file attributes.
ls -la a like all, also list files starting ç starting with the character ”.”

cat f1 display the contents of the file f1 on the screen.
cp f1 f2 copy from file f1 to file f2 (c o p y).
mv f1 f2 rename the file f1 to f2 (m o v e).
rm f1 destroy file f1 (r e m ote).

Notes:

• All shells distinguish between lowercase letters and uppercase for commands and file names
(unlike the from efunt MS-DOS).

• We have on-line help under UNIX allowing access to the rules of use and functionality of a
command. For it, just issue the command:
man name command.

2.3 Special shell characters

When entering an order (name command [options] [arguments]), all or part of the argument
can be designated as c on subtle with the help of special characters:

? denotes any any character.
∗ denotes a sequence (which may be empty) of characters.
[...] designates a character from the list.
[∧...] designates a character that does not belong to the list.

Example: either a current directory such as:
ls gives file1.bin file1.txt file2.txt file10.txt file.txt readme zzz

18

so
ls file1 ∗ gives file1.bin file1.txt file10.txt

ls file ∗ .txt gives file1.txt file2.txt file10.txt file.txt

ls file [0-9]∗ .txt gives file1.txt file2.txt file10.txt

ls ??? give zzz

3 Tree structure of UNIX files

The information unit managed by the system is the file. According to their use, the files are called
directories or all files. short. A directory is a catalog of files containing their characteristics like
access rights, size, date of creation... The backbone of the system is a tree structure of files (files) and
directories (directories). Each user can create At will in his workspace of new files and directories.

bin etc home tmp var

/

wallace gromit

rep1 f1 f2

f3

racine

repertoires du systeme

repertoires des utilisateurs

espace de travail des utilisateurs

3.1 Files and directories

Important Notions:

/ is the name of the tree root directory.

. designates the current directory.

.. designates the parent directory (just above).

Current directory: position in the tree at a given time.

Home directory: root of the tree structure of a user (home directory) and current directory
each time connection. For example / home / gromit is the home directory of growled.

Absolute name: Uniquely denotes a file in starting from the root. Each file has a unique
absolute name in the system. For example / home / wallace / rep1 / f3

Relative name: designates a file from the current directory. For example dir1 / f3 if the current
directory is / home / wallace. Two files with the same name can coexist if they are in two
different directories because they have an absolute name different.

19

3.2 Navigate in the tree structure

cd name directory allows to change directory (c hange d irectory).
cd .. allows you to go back to the above directory.
cd without argument, the command takes you to your home directory.
mkdir rep1 create the directory rep1 (m a k e dir ectory).
rmdir rep1 delete the directory rep1 (r e m ote dir ectory).

Notes:

• to create a file f1 in a directory x is equivalent to (i) create the file f1 and (ii) add the name f1
in the list of names contained in x

• creating a directory y in a directory x is equivalent to (i) add the name y in the list of names
contained in x and (ii) create a y file and associate an empty list with it.

3.3 Access rights to files

Each file (or directory) has a set of attributes defining the access rights to this file for all system
users.

3.3.1 User classes

There are 3 classes of users who can optionally access To a file:

• the owner of the file (User).

• the group to which the owner belongs (Group).

• the others (Others).

When it is created, a file belongs to its author. The file owner can then distribute or restrict the
access rights to this file as we will see later.

3.3.2 Types of access

For each user class, there are 3 types of access to a data file:

• in reading (Read).

• in Write.

• in execution (eXecute).

At the directory level, these rights mean:

• Read: right to list the files found in this directory.

• Write: right to create or delete a file located there.

• executed: right to traverse this directory.

20

3.3.3 Control and visualization of access rights

For this, we use the command ls -l.
home / wallace > ls -l

total 3

-rw-r - r-- 1 wallace usr 12 Dec 18 12:14 f1

-rw-r - r-- 1 wallace usr 297 Dec 18 12:14 f2

drwxr-xr-x 2 wallace usr 512 Dec 18 12:14 rep1

The first character specified if the file is a directory (character d) or a file (character -). The 9
characters following identify the access rights (presence of the right if letter r, w or x) in the order
of user (u), group (g) and others (o).

3.3.4 Modification of access rights

Only the owner of a file can modify his access rights. For that, it uses the command chmod with
the syntax next: chmod who ± what name file
with qui = u, g, o, a and what = r, w, x, − to remove rights and + to add more.

Examples:
home / wallace > chmod or f1
home / wallace > chmod g + w f2
home / wallace > chmod go-rx rep1

The result of these commands is:
home / wallace > ls -l

total 3
-rw-rw ---- 1 wallace usr 12 Dec 18 12:14 f1

-rw-rw-r-- 1 wallace usr 297 Dec 18 12:14 f2

drwx ------ 2 wallace usr 512 Dec 18 12:14 rep1

4 Inputs / outputs and pipe

Usually the commands read the standard input and / or write to standard output. By default, the
standard input is the keyboard and the standard output is the screen. It is possible to redirect this
standard input and output to files using > and < characters.

Commande

Entree standard

std−in

donneesdonnees

Sortie standard

std−out

21

4.1 Redirection of standard output

So that the result of a command is stored in a file at the instead of appearing on the screen, use the
syntax:

name command [options] [arguments] > file output

If the file file output does not exist, it is created and will contain the order result. If it existed before,
its content is is overwritten. If we want this content is preserved and add the result of a command,
you must use the redirection >>

4.2 Redirection of standard input

Likewise, instead of providing data by entering it on the keyboard, these data can be read from a
file with the syntax:

name command [options] [arguments] < file output

Example:
wc -l file1: indicates on the screen (standard output) the number of lines of the file file1.
ls -l file1 > temp; wc -l temp: same result than the previous command.

4.3 Pipe

In the same order of ideas as the redirection of standard / output, we can use the mechanism of pipe
(tube) which allows to take the standard output of a first command and redirect it to the standard
input of a second order. The syntax uses the character | as follows:

name command1 [options] [arguments] | name command2 [options] [arguments]

This sequence of commands can be schematized as follows:

Commande 2
std−in

std−out 2
Commande 1

 1 std−out 1

std−in 2

Example:
ls -l file ∗ | wc -l

5 Search tools

Unix offers powerful file search or search tools in files.

5.1 Search for strings in a file

The grep command displays the lines of the data files in arguments which contain a given pattern:

grep options pattern files

22

Example:
grep subroutine * .f
allows to display on the screen all the lines of the files of the current directory with extension ”.f”
and containing the pattern ”subroutine”.

Basic options:
-i ignores the lowercase / uppercase distinction.
-v display lines which do not contain the pattern.
-n print out lines and their numbers that do not contain the pattern.

5.2 Search for a file

The find command descends recursively in subtrees of directories, seeking to apply to files specified
by one or more selection criteria (name, type, date of modification, etc.), a given command. find is
used as ç on:

find list of r éxpression directories

where list of directories is the list of tree roots To browse and expression is a series of options
expressing the file selection criteria and actions to apply to them. When the criterion is true, the
action is executed.

Example of selection criteria:
-name "pattern" true if a current filename contains the pattern string.
-user username true if a current file belongs to user username.
-mtime n true if the file has been modified in the last n days

(+ n to express ”n and more” and -n to express ”n and less”).

Example of actions to be performed on the selected files:
-print display the name of the current file.
-ls list of information about the current file.

Examples:
find. -name ”* .f” -print
allow to search recursively from the current directory ”.” all files with the ”.f” extension.

find / home / gromit -name ”*” -print | xargs -i grep -i ”Wrong Trousers”
allows recursive search from directory / home / gromit all files and display the lines that contain the
string of ”Wrong Trousers” characters without distinguishing between upper and lower case.

23

Annex B

START PROGRAMMING IN FORTRAN

J-C. Soetens

University of Bordeaux

First simple program in Fortran

Name of the file : ex1.f

123456789012345… 72

 program example_1

c my first program

 write(*,*) ’’Hello world’’

 end

One instruction per line.

Upper and lower case are not significant, blank lines and spaces are not significant.

To create an executable, you need to compile the code.

If the compiler is gfortran :

your prompt > gfortran –o ex1 ex1 .f

To execute the program, submit the new command to the system :

your prompt > ./ex1

Fortran operators

** raise to the power of

* multiplication

/ division

+ addition

- subtraction

Types of variables

It is recommended to impose the declaration of all variables : implicit none.

Types : integer, double precision, logical, character.

Name of the file : ex2.f

 program example_2

 implicit none

 double precision TC, TK, Kfactor

 parameter(Kfactor = 273.15d0)

c input

 write(*,*) ’’Enter the temperature in C :’’

 read(*,*) TC

 if (TC .lt. (-Kfactor)) then

 write(*,*) ’’this temperature do not exist’’

 STOP

 end if

c algorithm

 TK = TC + Kfactor

c output

 write(*,*) ’’The temperature in Kelvin is : ’’, TK

c output using a format

 write(*,’’(The Temperature in Kelvin is :’’, F8.2)’) TK

 end

Intrinsic functions

Some functions are so important that they are provided as part of the language.

As we will systematically use real variables in double precision, the needed intrinsic functions name will

start with the letter ‘D’.

Examples :

DABS(X) absolute value of any X

DCOS(X) cosine of argument in radians

DSIN(X) sine of argument in radians

DTAN(X) tangent of argument in radians

DACOS(X) inverse cosine in the range (0,ð) in radians

DASIN(X) inverse sine in the range (-ð/2,ð/2) in radians

DATAN(X) inverse tangent in the range (-ð/2,ð/2) in radians

DEXP(X) exponential function

DLOG(X) natural logarithm: if W is real it must be positive,

DLOG10(X) logarithm to base 10

DSQRT(X) square root function

Logical controls

The if statement is the way of changing what happens in a program according to a condition.

Syntax :
 if (logical expression)then

c instructions(s) in case the logical expression is true

 …

 else

c instruction(s) in case the logical expression is false

 …

end if

Main operators :

.lt. less than

.le. less than or equal

.eq. equal

.ge. greater than or equal

.gt. greater than

.ne. not equal

.not. not

.and. and

.or. inclusive or

Loops

In case you need to repeat a set of instructions, different ways exist to do this repetition.

Case 1, you know the number of repetitions : do loop.

 do variable = start, stop [,step]

c instructions to do

 …

 end do

with :

variable is an integer variable

start is the initial value var is given

stop is the final value

step optional, is the increment by which var is changed

Case 2, you do not know the number of repetitions : do while

 do while (logical expression)

c instructions

 …

 end do

WARNING ! Possibly an infinite loop if the logical expression is always true (never false).

Arrays

Important in scientific programming: manipulation of vectors and matrices.

Examples of declarations :

 integer V(10)

 integer M(10,10)

 double precision N(2,50)

V is a vector of 10 (integer) elements.

V(1) is a pointer to the first element, V(10) is a pointer to the tenth element.

M is a table of 10 x 10=100 (integer) elements.

In the memory of the computer, it is a stack of elements with the first argument running in first, so the

order is M(1,1), M(2,1)…M(10,1), M(1,2), M(2,2)…M(10,2) …M(8,10), M(9,10), M(10,10).

N is a table of 2 x 50=100 (double precision) elements.

Name of the file : ex3.f

 program example_3

 implicit none

 double precision M(10,10)

 integer i, j

c initialize all the elements of the table M to zero

 do j=1, 10

 do i=1, 10

 M(i,j) = 0.0d0

 end do

 end do

c use of table M to to something…

 end

Functions

As for intrinsic functions, you can define our own functions for use in a program. This is a very powerful

feature because it allows to writte code once while it can be used many times. Such own functions can be

programmed and tested separately, even build a library.

Name of the file : ex4.f

 program example_4

 implicit none

 double precision V1(3), V2(3)

 double precision scalar_product

 integer i

c initialize the 3-D vectors V1 and V2

 do i=1, 3

 read(*,*) V1(i), V2(i)

 end do

 write(*,*) scalar_product(3, V1, V2)

 end

Name of the file : sp.f

 function scalar_product(n, A, B)

 implicit none

 integer N

 double precision A(N), B(N)

 double precision scalar_product

 integer i

 scalar_product = 0.0d0

 do i=1, N

 scalar_product = scalar_product + A(i)*B(i)

 end do

 end

To test the function scalar_product solely (so only the Fortran syntax) :

your prompt > gfortran –c sp.f

To build an executable with the two files :

your prompt > gfortran –o ex4 ex4.f sp.f

Subroutines

Subroutines are very similar to functions but they do not return a value.

Example of code of a subroutine :

c subroutine MY_FIRST_SUBROUTINE(argI, argJ,…,argZ)

 implicit none

c declarations of arguments

 …

c work to do

 …

 end

Somewhere in a program

c programm example_5

 implicit none

c declarations

 …

c core of the program

 …

 call MY_FIRST_SUBROUTINE(arg1, arg2,…,argN)

 …

 end

Many more things to explain !

List of arguments, declarations, local and global variables, etc.

If you want to know (much !) more :

http://www.idris.fr/formations/fortran/

Training exercises :

Write, compile and test your own programs :

1) Write a program that accepts two vectors of dimension n, then calculates and displays the sum of

the two vectors.

2) Same as problem 2) but your program must read the vectors components from a file.

3) Write a program that accepts two vectors of dimension n, then calculates and displays their scalar

product.

4) Write a program that accepts the coefficients of a quadratic equation (ax2+bx+c=0) and finds the

roots. Consider all possible cases including the complex one.

5) Re-write the sum and scalar product of two vectors as ‘subprograms’.

6) Write a program to calculate the integral of a function using the ‘trapeze ‘ approximation.

7) Write a program to sort a list of values in ascending order.

8) etc.

	Introducing UNIX
	Development of a working session
	Connection procedure
	Password change
	Logout procedure

	Command interpreter
	Command syntax
	Elementary commands
	Special shell characters

	Tree structure of UNIX files
	Files and directories
	Navigate in the tree structure
	Access rights to files
	User classes
	Types of access
	Control and visualization of access rights
	Modification of access rights

	Inputs / outputs and pipe
	Redirection of standard output
	Redirection of standard input
	Pipe

	Search tools
	Search for strings in a file
	Search for a file

