

START PROGRAMMING IN FORTRAN

J-C. Soetens

University of Bordeaux / 2021-2022

If you want to know more :

http://www.idris.fr/formations/fortran/

First simple program in Fortran

Name of the file : ex1.f

123456789012345… 72

 program example_1

c my first program

 write(*,*) ’’Hello world’’

 end

One instruction per line.

Upper and lower case are not significant, blank lines and spaces are not significant.

To create an executable, you need to compile the code :

your prompt > ifort –o ex1 ex1 .f

To execute the program, submit the new command to the system :

your prompt > ex1

or

your prompt > ./ex1

if your home directory is not in your path (variable of the unix system).

Operators

** raise to the power of

* multiplication

/ division

+ addition

- subtraction

Types of variables

It is recommended to impose the declaration of all variables : implicit none.

Types : integer, double precision, logical, character.

Name of the file : ex2.f

 program example_2

 implicit none

 double precision TC, TK, Kfactor

 parameter(Kfactor = 273.15d0)

c input

 write(*,*) ’’Enter the temperature in C :’’

 read(*,*) TC

 if (TC .lt. (-Kfactor)) then

 write(*,*) ’’this temperature do not exist’’

 STOP

 end if

c algorithm

 TK = TC + Kfactor

c output

 write(*,*) ’’The temperature in Kelvin is : ’’, TK

c output using a format

 write(*,’’(The Temperature in Kelvin is :’’, F8.2)’) TK

 end

Intrinsic functions

Some functions are so important that they are provided as part of the language.

As we will systematically use real variables in double precision, the needed intrinsic functions name will start with the

letter ‘D’.

Examples :

DABS(X) absolute value of any X

DCOS(X) cosine of argument in radians

DSIN(X) sine of argument in radians

DTAN(X) tangent of argument in radians

DACOS(X) inverse cosine in the range (0,ð) in radians

DASIN(X) inverse sine in the range (-ð/2,ð/2) in radians

DATAN(X) inverse tangent in the range (-ð/2,ð/2) in radians

DEXP(X) exponential function

DLOG(X) natural logarithm: if W is real it must be positive,

DLOG10(X) logarithm to base 10

DSQRT(X) square root function

Logical controls

The if statement is the way of changing what happens in a program according to a condition.

Syntax :
 if (logical expression)then

c instructions(s) in case the logical expression is true

 …

 else

c instruction(s) in case the logical expression is false

 …

end if

Main operators :

.lt. less than

.le. less than or equal

.eq. equal

.ge. greater than or equal

.gt. greater than

.ne. not equal

.not. not

.and. and

.or. inclusive or

Loops

In case you need to repeat a set of instructions, different ways exist to do this repetition.

Case 1, you know the number of repetitions : do loop.

 do variable = start, stop [,step]

c instructions to do

 …

 end do

with :

variable is an integer variable

start is the initial value var is given

stop is the final value

step optional, is the increment by which var is changed

Case 2, you do not know the number of repetitions : do while

 do while (logical expression)

c instructions

 …

 end do

WARNING ! Possibly an infinite loop if the logical expression is always true (never false).

Arrays

Important in scientific programming : manipulation of vectors and matrices.

Examples of declarations :

 integer V(10)

 integer M(10,10)

 double precision N(2,50)

V is a vector of 10 (integer) elements.

V(1) is a pointer to the first element, V(10) is a pointer to the tenth element.

M is a table of 10 x 10=100 (integer) elements.

In the memory of the computer, it is a stack of elements with the first argument running in first, so the order is M(1,1),

M(2,1)…M(10,1), M(1,2), M(2,2)…M(10,2) …M(8,10), M(9,10), M(10,10).

N is a table of 2 x 50=100 (double precision) elements.

Name of the file : ex3.f

 program example_3

 implicit none

 double precision M(10,10)

 integer i, j

c initialize all the elements of the table M to zero

 do j=1, 10

 do i=1, 10

 M(i,j) = 0.0d0

 end do

 end do

c use of table M to to something…

 end

Functions

As for intrinsic functions, you can define our own functions for use in a program. This is a very powerful feature

because it allows to writte code once while it can be used many times. Such own functions can be programmed and

tested separately, even build a library.

Name of the file : ex4.f

 program example_4

 implicit none

 double precision V1(3), V2(3)

 double precision scalar_product

 integer i

c initialize the 3-D vectors V1 and V2

 do i=1, 3

 read(*,*) V1(i), V2(i)

 end do

 write(*,*) scalar_product(3, V1, V2)

 end

Name of the file : sp.f

 function scalar_product(n, A, B)

 implicit none

 integer N

 double precision A(N), B(N)

 double precision scalar_product

 integer i

 scalar_product = 0.0d0

 do i=1, N

 scalar_product = scalar_product + A(i)*B(i)

 end do

 end

To test the function scalar_product solely (so only the Fortran syntax) :

your prompt > ifort –c sp.f

To build an executable with the two files :

your prompt > ifort –o ex4 ex4.f sp.f

Subroutines

Subroutines are very similar to functions but they do not return a value.

Example of code of a subroutine :

c subroutine MY_FIRST_SUBROUTINE(argI, argJ,…,argZ)

 implicit none

c declarations of arguments

 …

c work to do

 …

 end

Somewhere in a program

c programm example_5

 implicit none

c declarations

 …

c core of the program

 …

 call MY_FIRST_SUBROUTINE(arg1, arg2,…,argN)

 …

 end

Many things to explain !

List of arguments, declarations, local and global variables, etc.

