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Wenn wir wussten, was wir tun,
wurde man es nicht Forschung nennen.

(If we knew what we are doing

it would not be called research) .
Albert Einstein

“If I have seen farther than others, it is because
[ have stood on the shoulders of giants.”

Sir Isaac Newton (1642 — 1727) Physicist
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Grades (American English) or Marks (British English)

50%: Written open-book exam of ~ 2 hours on the last day (Feb. 15)

_|_
50%: Doing a small (5 50 lines) coding exercise on an MD-related

problem as a take-home exam on the last 3 days
(Feb. 12-14 (or so) ) of the course
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Part 1: We try to remember CHE502
— a little bit of Quantum Mechanics (QM)
— a little bit of Statistical Mechanics

Part 2: Statistical Mechanics via molecular simulations
(MD & MC)
— Modeling

— A Few Necessary Approximations & Tricks

Part 3: Extracting Information from Simulations
— Statics (thermodynamics)

— Dynamics (kinetics)
Part 4: Other Simulation Methods

Part 5: Examples, Computer Lab
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CHE 501 academic year 2018/19

VISTEC, ESE program

Part 1 CHEb502

— Quantum Mechanics
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Time independent Schrodinger Equation

H \Dilai25i37“-(az17 x27 x37 "') — E’il,’l:z,’ig,... : \Ijil,i%i?),,,,(ﬂfl,ﬂfg,ﬂfg, ...)

H: 0 (describes the system (atom, molecule, ...))
U, isis... (21, 22,23, ...): Wavefunction, eigenfunction, also called state,
with n independent variables x; and n quantum numbers ¢;

Ei, i,.is,...: Energy eigenvalues
Hamiltonian H Eigenvalues E Eigenfunctions ¥
particle in box E, = h?/(8mL?) -n*,n=1,2,3... Cosine
harmonic oscillator FE, = hw(v+1/2) ,v=0,1,2,.. Hermite-Gaussian
rigid rotor E,=h*/(2D)I(l1+1),l =0,1,2...  spherical harmonics (I, m)

hydrogenoid E,=-R-1/n*,n=1,2,3... *
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— Statistical Mechanics

If we know (or can construct to a good approximations) all

(or at least a "representative sample” ) of the (micro-)states of a system
that are compatible with our macroscopic state

(e.g. NVE, NVT, NpT, uV'T, ...)

then we can (in principle, if not practically) compute its partition function
(called ©2, Q (2), E, ...)

We have studied a few cases, where the ratio of partition functions

(= the equilibrium constant k of a gas-phase reaction)

can be obtained to a good approximation using only the first term of the
partition function

(i.e. only one of the very large number of possible states)

This is, however, quite exceptional, and in most cases we have to
do a more careful job.
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(), the canonical partition function (sum of states Z)

Q= > exp(_Ei(k]Z;FV’T))

all states 2

The average value (...) of any quantity (observable) A over the given
ensemble (NV E, NVT , etc.) is given by (just two examples):

(A)r = = A(p, q) - exp dp dg
Q all p,q kBT
where ¢ stands for all positions variables (x1,y1, 21, Z2.Y2, --...... L ZN)
and p for all velocity variables (VXL VYL eevevvnnnnaaaann ,UZN )

So the integrals are 6 N-fold integrals ([ [ [ ...... [) over the (g, p)-space,
which is called phase space

VISTEC



From Q (NVE), it is

(A = = /H A(p,q) - 0(E(p,q) — Eo) dp dg (Av(2)

In both cases (and in all other cases):

= not really doable (toomany [ [[ [[[ [[[[ ... dz1idzadasd... dvidvad...)
= simulations
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VISTEC, ESE program CHE 501 academic year 2018/19

Part 2 Basic Ideas

Instead of doing systematically all the [[[[ over all the ¢ and p,

we try to select beforehand those ¢ and p which contribute markedly to
the integral for (A).

Doing this is a "simulation”

— We construct a sample of gs and ps compatible with our conditions
(NVE, NVT, etc.)

— The computation of the averages is thus much simpler:
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Thermodynamic average from simulations (much simpler!)

N
1
(and for later : MC: (A)p = N Z AC) )

where P; (which stands for all the ¢ and p) is called the ith configuration
(from the sample) in phase space

and C; (all the g only) is the ith configuration (from the sample)

in configuration space)

= more later
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Statistical Mechanics via MD-Simulations
Flowchart

other sources

rﬁ . ( \ in some cases
QM F|t Model —» normal
molecular ab— Energies modes
— ab- > —> —® parameters
Hamiltonian Initio
DFT
)
. . »| 1
simulation configurations ’
L sample .
MD history —> —_—>| 2
MC —
— (in MD:  »
1 trajectory) —>
I
I .
: Evaluations observables
!_ ___________ averages -
| o the Ty o _>( routine stuff ]
other input
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Each step needs critical thinking nothing is "automatic’
there are no ’standard’ procedures (chemists,engineers, remember

this)
& other sources
/ﬁ . / \ in some cases
oM Fit Model — normal
molecular Energies d
. modes
- ab- > — —® parameters
Hamiltonian INitio
DFT
S
simulation configurations
L sample
—
MD history —> —_—>| 2
MC —
—» (in MD: >
| trajectory) E—
I
| .
: Evaluations observables
I averages
il ol > | routine stuff J
on the fly VISTEC

other input



- REMINDER: Born Oppenheimer (BO) approximation

Let's look at a molecule.

lts Hamiltonian H will depend on the positions of the nuclei /R and
electrons r,

and so will the Eigenvalues (energies) and Eigenfunctions (states)
let's call them W(R, 1)

We do the usual product-ansatz (BO approximation):

\IJ(R7 ?“) _ welectroniC(T) ) SOnuclei(72/)

— Solving the equations for the electrons, at fixed positions of the nuclei
(which appear in the Hamiltonian of the electronic equation as parame-
ters) is the topic of quantum chemistry.

From this we get the Potential Energy Surface (PES)
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The Schrodinger equation for the nuclei can in many cases (but not al-
ways!) be replaced by classical mechanics (MD): Newton's equation

For all masses larger than Hydrogen and
temperatures > room temperature
classical mechanics (Newton's equation) is a good approximation.

Hydrogen is 'borderline’ (de Broglie wavelength = particle dimension)

Reminder: relation of QM to classical mechanics

the larger the mass, the higher the temperature, the more 'classical’,
see " de Broglie (thermal) wavelength”:

h h
A= —, with pfrom < Fyin > = A=
p \/QkaBT
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Thus:

o’r 5 -
For each particle i : m; - a—t; = F; = —grad, (PES)

For NV particles, this is a system of

— 3NN coupled 2nd order partial differential equations, or

— 6N coupled 1st order partial differential equations

(coupled because " grad, (PES)” depends also on all other particles 7)
Before we discuss how to solve such differential equations,

we will deal with the description of the PES

PES = V(R) = V(Ry, Ra, Rs, ..., Ry
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CHE 501 academic year 2018/19

Interaction Models (PES) << CHE502,

some reminder and additional material below
(also called molecular Modeling, Force Field Development ..... )

other sources

( \ t ( \ in some cases
QM Fit e % normal
molecular i Energies modes
=] O > e ——®1 parameters
Hamiltonian INitio
DET
)
. : »| 1
simulation configurations >
—P sample —
SEm—
MD history —> —»| 2
MC —
(in MD: —
I trajectory) —>
I
I .
I Evaluations observables
!_ ___________ averages
. 'on the fly’ b e e e e e - = = _»[ routine stuff J
other input
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PES, recap from a slightly different viewpoint:

We distinguish first between:
Inter— (between) and intra— (inside) molecular interactions

Vtotal _ Vinter 4+ Vintra 4+ Vinter—intra 2
Remember:
typical intra— and intermolecular potentials /  kgT (T=300K)
inter
intra
harmonic fit ———
i
c
>
2| kT
g [l =300¢
g
©
>
%¢
0 1 2 3 4 5 6

r/A
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(1) Intermolecular Interactions

Keywords:
Pairwise additive (or simply pair) potentials

Many-body potentials, polarizabilities and polarization

(2) Intramolecular Interactions

Keywords:
Internal coordinates (bond-stretch, angle-bend, torsion ...)

"bonded” and " non-bonded” interactions

So why do we (usually) use different mathematical representations for the
inter- and intramolecular interactions (inter- and intramolecular PES) ?
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(1) Intermolecular

Usually this PES V is a function of many variables: V' (ry,7r2,73,74,...)
(=~ 3N variables for N particles)

and one struggles to get a meaningful representation.

Example: Two Lennard-Jones (LJ) potentials V1 and V2

LJ-potentials: V1: e=1.5, 0=2.5, V2: €=1.65, 0=2.25
(in arbitrary units)

w
Vi(ry3) + V2(ry3)

o

[6)]
V1(ry3) + V2(ry3)

Vl(rlS)

f13 %2%68 //

M3

3Dplot, color coded (redundant here)
Contour p|ot VISTEC Ph.A. Bopp & M.M. Probst 2018
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LJ-potentials: V1: e=1.5, 0=2.5, V2: €=1.65, 0=2.25
(in arbitrary units)

)
)
™
5_F|
I N—r'
~~ 0 5
3 1
S o5 =
- I —
= az
=+
e > _1 i :
X N—r
Exploring a PE 3 3
- > :
-15 12
in more than f :
’?Y) L2 10
SAZA i

1 dimension S 2t 12
imensio & w
~—~ 0"0'.‘&,?':;4’-_: E

k SRR R AR IR IRIRL
is very difficult ! 2, = :
£8 %% £
0

same, color coded for some other property

We discussed this already a lot in CHEbL02;
see also the little example (FORTRAN and gnuplot
scripting and plots with the gnuplot free software
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describing a PES: “Salami tactics”

Put together Vinter({ puucleily from smaller pieces
({ R3uclell=all nuclear coordinates)
(in some way like a LEGO )

However, there is a price ( There is no free lunch!)
as we shall shortly see.

Most frequently made approximation: _ _ _
The pair potential approximation

IVISTEC Ph.A. Bopp & M.M. Probst 2018
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The pair potential approximation

We will assume that:

}/inter ({R?uclei}) _ Z Uij (rij)

iocaj,B

where i, is a site on a molecule a and jg is a site on a (usually different)
molecule £.

ri; is the absolute value (modulus) of the distance between the two sites
? and j Trij; = |7:; —7:i7|

Ui; is the pair potential between the sites 7 and ;.

The pair potential approximation is a very drastic assumption

so let's look at it again very quickly since most of this was already dis-
cussed in CHEL02
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VISTEC, ESE program

. 1.e. that there are

les”

d bod

no deformations, no intramolecular motions (vibrations) etc.

rigi

Let us first assume that molecules are
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10 types of pair potential Uj;;
For two molecules:

a a

16 terms

8 terms

1 term
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The question now is: How to find the different U;;s?
. via the PES from quantum chemistry:

): You make many (=~ 100 - 1000) single point quantum chemical
calculations for ‘super-molecules’ consisting of one red and one
molecule with all possible mutual distances and orientations, keeping the
molecular geometries constrained.

): You chose sites on the molecule. In most cases, you locate the
sites on the atoms. Sometimes, you use one site for several atoms (e.g.
a CHy-group, or a CH3 group and such).
This is called the "united atom” approach, see below.

): Once you have determined the sites, you know how many dif-
ferent site-site pair potentials U;; you will need.
You make an Ansatz* for the Uj;
e.g.
U;; = electrostatic attraction or repulsion + short range repulsion + ...
* Ansatz, German word, plural Ansatze: What you put in initially in a

chemical reaction; what you start out with, assuming that it will work
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The most frequently used mathematical expression is:

1 Y . O'. . O'. .
Uij (Tij) — .q@ "QJ + 4-62’3" (( 'LJ )12_( Z] )6) _ UCoulomb+ULennard—Jones
dmeg T4 T T4

with

—L_ 3 constant depending on which unit system you use

47T€0 . ] ] . . '

g; and g; partial electric charges on the sites 7 and j

and ¢;; and o;; two (Lennard-Jones) constants depending on the type of

interaction (black-black, black-blue, blue-blue, etc.)

In our example (red and molecules) we would thus have 4 different
partial charges ¢; (4 types of sites), 10 €;;s and 10 o;;s,
a total of 24 parameters.

): Determine these 24 parameters by fitting the 10 U;; Ansatz-

functions to reproduce as well as possible the 100-1000 interaction ener-
gies determines in by quantum chemical calculations.
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Making these fits is difficult, and many tricks must be used.
Sometimes additional constraints must be applied
This is ongoing research work

We note that if we want to compute the total energy of an ensemble of
N molecules, each of which contains M sites, the total number of pair
interactions to compute will increase oc (N - M)? - a little something.
(Because every site will interact with every other site except itself and
sites on the same molecule.)

Let's now ask:

What is the price of the " pair potential approximation”?
i.e. What do we miss? What do we leave out? ...
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Pair potential approximation

pair potential U unchanged (r12 may change)

+
U(rli

same or some

other pair potenti

You miss the influence that a third particle (in blue) may have on the
(shape, strength, .... of the) interaction U between 1 and 2
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Summary: intermolecular interactions

In the pair potential approximation V™' will thus be a simple sum of
Us, and each U will depend only of the distance (r;; = |7 — 75|, i.e. a
scalar, not the vectors)

of only two sites 7 and j:

Vinter _ Z Uij (rij>
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— "Rigid” molecules are not always a reasonable approximation
(think e.g. of polymers)

So we need to describe the fact that molecules can
change their shape, vibrate, ......

This is done by means of intramolecular potentials 1/%tr2
(intra means “inside ")
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(2) Intramolecular interactions

Main features _
Deep (compared to kgT') potential wells

Stable molecules (no dissociation)

= model potential can diverge at small and large values of the argument
(e.g. distance)
= harmonic (bilinear) ansatz:

/intra Z kii pi p; p = internal (or Wilson’ s) coordinate

types of p: bond stretch : dr = ((rqop) — (’rgﬁ))

angle bend : da = ((aapy) — (ozgm)),

a, 3,7 (adjacent) atoms (sites) on the same molecule;
tOI’SiOIl . 5@ — ((@aﬁfyé) - (@8‘575)),

a, 3,70 (adjacent) atoms (sites) on the same molecule;

0. equilibrium value
This is a generalization of the Hook's law spring model

(— Torsions : harmonic not always suitable. Why? )
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Vintra — Z flm Pl Pm

I<m

where f,,, is the force constant (or element of the F-matrix),

the p are Wilson's internal displacement coordinates.

Warning: The sum goes either as written here (1-1, 1-2, 1-3, but not
2-1, 3-1, 3-2, ... (i.e. no double counting) ), but definitions vary.

Many 'types’ of p, here only 3 are given:

Type “stretch*: psteteh — ;s — ol
Type “bend™:  p°end = Qijk — gjk

Type “torsion*: ptorsion = ¢, . — ¢zykl

where 7;; is the dlstance between two sites (here always site = atom!)
ok 1S the angle between r;; and rj, at atom j
®ijk 1S the angle between the plane defined by atoms ¢,7,k
and the plane defined by atoms j,k, and [
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Note:

1) You see that the definitions of the p already contain parameters,
the “equilibrium values™

2) You can easily extend V"2 yp to higher orders in p (anharmonicities):

VIR =Y fim o pmt D Kkim Pk pL Pt e

<m k<m<n

3) The computation of such V2 is “technically “ more complicated
than the simple sum or pair-potentials U, but
In our system with N molecules with M sites each,
we define a number of ps between the M sites of each molecule,
say M,, and the total number of interactions to compute will be

N - M,, which increases o< N
and not o N2 (like intermolecular interactions)
when we increase the “system size"”.
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4) Torsions:

If the barriers are not very hight compared to kgT’, torsional potentials
should be written as something like:

Vintra tOI‘S(p) X Z(COS(i,O) 4+ 1)

Torsions

i=i term —_
i=3 terms
i=1+i=3 terms

U(p)
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Let's put everything together and write:

total inter intra
V =V +V

and look at two examples:

- Various classes of models for CCly
- Model potentials (models) for water

This can also be seen as an exercise in
coarse graining
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Example Modeling CCl,4

u

inter

= Lennard-Jones

rigid

flexible

inter . .
U = Z Pair potentials

intra
+U

3-body terms | polarisation
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Coarse-graining often involves replacing a feature by its average value

e.g. : united atom
replace several atoms (sites) by one pseudo-atom (site),
e.g.: CH3 ="Me", CHy= xx, CCly = carbon-tet (our example)

This saves a lot of computer time, e.g. for N CCls-molecules :

25N 2 interactions for the all-atom model
N? interactions for the united atom model

Q&

Difficulty: Which 'average’ to use?
Average energy (of some sort)? Average 'size’ (whatever that may be)?
Average ...7

Which isthe’correct’ radius ?

WISTEC Ph.A. Bopp & M.M. Probst 2018



Intramolecular potential for water:
A) Define the internal coordinates:

— 0 _ 0 _ 0
pl — TOHl - TOHl 3 p2 - TOHQ T TOHQ ’ p3 — aHloH2 o aHlng

p1 and po are of type “stretch”, p3 is of type “bend”.
ot om, ~ 109 degrees.

(Other definitions are possible, we can also use more than 3 coordinates)

B) For symmetry reasons, the potential then must be written as:

vinte = iy (o +p3) 4 faz - P
+ fia-p1-p2 + fizs-ps-(p1+ p2)

We have thus 4 independent constants (i.e. fi1 = fao etc.)
f11 is called the (diagonal) O-H stretching force constant (Hook's law),
f33 is the (diagonal) HOH bending force constant,

f12 and fi3 are the stretch-stretch and stretch-bend coupling constants,
respectively.
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In other terms (nomenclature more like the one used in spectroscopy):
Water, co, symmetry, harmonic potential, thus:

p1 =0ro—mu, pP2=0ro_g, pP3=00u,_o_n,

V(p1,p2, p3) = k11 - (p] +p3) + k33 - p3+ k12 p1-p2+kiz- (p1p3 + paps3)

ki1 k12 ki3 p1 |
< (p1,p2,p3) | ki ki1 Kkis |- | p2 (factors§ )
k13 ki3 k33 P3
The matrix is called the F-matrix (!) (remember chi502)
(it is symmetric,

be careful, there are different ways in the literature to write this)
here it contains 4 independent constants k.
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Water: Models for the intermolecular interaction:

Just for water (H20), there are probably about 50 reasonably good, but

quite different models in the literature.
They are known by acronyms like BNS, ST2, MCY, TIPS, TIP3P, TIP4P,

CF2, CF3, BJH, SPC, SPC/E, etc. etc. etc.

— "rigid” (V%2 replaced by constraints) or "flexible” models

— 3, 4, b or more sites

— "polarizable” (ji < o E) and "non-polarizable”

— from Quantum-Chemical PES (ab-initio, DFT, ... of various qualities)
or fitted to reproduce certain properties
(structure (g(r)s), thermodynamics, phase diagrams, spectroscopy,
solvent properties, ....... )
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One more reminder

If the potential is 'narrow’ (Ax small in the uncertainty relation)

the frequencies w can still be obtained to a very good approximation
classically

(and then used to compute the 'quantum’ energy levels of this 'oscillator

system’, (i.e., for example, without diffusion) )

So if we have again a system of ¢ = 1, ..., N interacting particles
(here via a very specific potential energy function)

Such a system of coupled

(because F; depends in general not only on 7; but also on all other 7S)
differential equations generally does not have ’analytical’ solutions
(Henri Poincaré)

However, in this particular case (= 'harmonic’ problem), it has,
and the solutions are called " normal modes” .
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Systems which have analytical solutions

(i.e. mathematical expressions, like sin(..), cos(...), exp(..), ...)
are called 'regular’ (or linear) systems,

the others are 'irregular’, non-linear’ or 'chaotic’

Studying non-linear systems is a branch of mathematics (chaos theory)

See 'normal modes’ in the supplementary material for the usual way to
study harmonic (a class of linear or regular) systems.
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Normal Modes
In some cases, Newton's coupled differential equations of motion:

O%r;
m; a—;:gmdiszi , 1 =1, N

do have an analytical solution.

The most famous case are 'normal modes’
(physicists talk about 'group coordinates'’),

which exist ONLY if the right hand side

(rhs, i.e. the potential V' and forces F)

have a very special form and the motions are 'infinitesimally small’ around
an extremum (usually minimum, however, — transition states).

Normal modes are a generalization of the well-know
harmonic oscillator problem
(which you have studied over and over)
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Reminder:

k 1
v m w(v—|—2)

m: the mass; k: the force constant (2nd derivative of potential)
w: frequency, v vibrational quantum number

( Note again the the frequency computed from classical mechanics is used
in the expression for the quantum energies)

Classical solution:
Azx(t) = A-cos(wt) + B -sin(wt) = C - cos(wt + 0)

x(t)—xo: a displacement with respect to an equilibrium position
, 0 from the initial conditions
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for two masses m and M (and one 'spring’) on has:

L 1 1 1 1
W=7 s STty adstll By =hoe (vt 5)

Spring: Hooke's law V (z) = k - (z — x¢)?

(often written as V(z) = k/2 - (z — x¢)?
For more masses and 'springs’, we generalize the springs as:

V= Z kijpip; (which can be expanded as V = Z Ccr uy U )
" Kkl

ki; are (generalized) force constants (force field),

p internal (Wilson) coordinates (stretch, bend, torsion ...)
T,Y,z . . . . .

w,’”"" are (infinitesimally) small displacements

of particle k in x,y or z direction

Such a 'harmonic’ potential can be obtained by expanding any potential
around an extremum (minimum)
This is what the quantum chemistry codes do.
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With this potential (bilinear form) Newton’s equations of motion can be
solved analytically

(see Wilson, Decius and Cross)

and one gets for the motions of particle i:

N
Fi(t) =7 =) Ay Q] -cos(Qy-t+6y)
J=1

There are (if ....) N/ = 3N — 6 normal modes for a system (molecule)
of N masses, N' = 3N — 5 for linear systems (molecules)

Aj; and 07 are arbitrary amplitude and phase factors
(which depend on the initial conditions)

Q7 are vectors (the normal modes) describing the relative motion
of atom ¢ under mode J.
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Properties of normal modes:
- All atoms 7 in a normal mode J move 'in phase’ (or anti-phase), the A
and 0 depend only on .J, not on ¢

- Normal modes are 'orthogonal’ (or adiabatic) to each other,
this means a mode J will not transfer vibrational energy to another mode
(you know that e.g. in molecules this is not entirely true)

- Normal modes are the main tool to assign and interpret
vibrational spectra (IR, Raman)
the symmetry of the normal modes is related to the selection rules

The quantum energies are, since the modes are independent:

1 1 1 1
E’U1,’U2,’U3,...,'UN — h(Ql(U1+§)—|—QQ(U2—|—§)—|—Qg(?}3+§)+...—|—QN(UN+§))
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Beware:

Since normal modes are independent, i.e. do not exchange energy, a
normal mode system will not evolve toward thermodynamic equilibrium!

— Your spectroscopy class

In the general case,

I.e. when normal modes cannot be computed,
the egs. of motion of an N-particle problem
MUST be solved numerically

— MD-simulations
— Statistical mechanics (use €2 for partition function)
— MC-simulations
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Simulations: MD and MC: A few (essential!) " tricks”

molecular
»| ab-
Hamiltonian initio

)

Energies

—

other sources

)
Model

Fit

in some cases
—————» normal

modes

> parameters

—

simulation

MD
MC

other input

L

configurations

sample

history

(in MD:
trajectory)

Evaluations observables

averages

__________ _»[ routine stuff ]
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Let's remember some of our goals
— study matter, mostly disordered condensed phases (e.g. liquids),
at finite temperatures, from a molecular (microscopic) standpoint

— understand the links between molecular properties and the
macroscopic observables

— study matter under conditions (pressure (density), temperature, ...)
not easily attainable in the laboratory

— try avoid as much as possible 'unnecessary experiments’
(e.g. in the pharmaceutical industry)

— gain some predictive power
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The properties of condensed matter

(e.g. its structure, internal energy, viscosity, diffusion, ...)

in particular at finite temperatures T > 0 K

cannot be related to the properties of a single molecule alone.

Such properties are properties of ensembles of many (how many?) molecules.

Many methods in theoretical chemistry consider only the
(potential) energies at T = 0 K an thus neglect the influence of the
kinetic energy (entropy).

This is sufficient in many cases, e.g. in reactions where the energy dif-
ferences between the reactants (educts) and the products are large.

Remember the examples from CHI502

VISTEC



However, many reactions, e.g. in biology, are so fine-tuned that tem-
perature becomes a very important factor
and we need much better approximation to the partition function(s)

= partition function approximated well enough by a single term
= statistical mechanics

(Statistical mechanics
~ statistical thermodynamics
~ statistical physics
~ many particle physics
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- Molecular simulations (MD MC)
Molecular Dynamics (MD) , Monte Carlo (MC)

allow to go beyond simple (e.g. harmonic) potentials
and the few 'academic’ cases that can be treated 'analytically’

Basic idea of molecular simulations:

Since it is impossible to compute the partition functions (2, Q, = ... )
(i.e. all states compatible with a set of external conditions (e.g. (NV F)),
we will construct a representative sample

This i1s called a simulation
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Here we shall briefly look at the two main simulation methods:
Molecular Dynamics (MD)

(Metropolis) Monte Carlo (MC)

(and there are several others, to be discussed if we have time)

Historical remarks:
Numerical work (e.g. MD, MC) was not possible before computer be-

came generally available (1970ies with some precursors
(Edward Teller, Bernie Alder ...) since the 1940ies (Manhattan Project))

Theoreticians were used to search for "analytical solutions’
(i.e. finding mathematical solutions of

(usually differential or integral) equations)

Simulations required a different way of thinking,
they were thus often called computer experiments
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Basic Idea of MD (many of which also for MC)

We first remember, from classical mechanics:

If the potential V (and thus forces F') in Newton's equation depend ONLY
on the relative positions (7s) of the particles

(and not e.g. on some 'external’ variables)

the total energy of this system (and the momenta)

will remain constant along the trajectory

(conservation of total energy, independently whether this trajectory can
be found analytically or not).

Quantities which remain constant along the trajectory (energy, momenta)
are called (first) 'integrals’ of the system

We will make use of this when we construct the (NV E) ensemble using
MD simulations.

In MC, we usually construct the (NVT') ensemble
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However, many assumptions (and tricks) are common to MD and MC
(MC needs fewer, but also yields fewer results!)
We talk first mainly about MD and about MC later

Definitions:
In MD, we used the term configuration to designate the ensemble of the
nuclear positions ({ R™"“!*'}) and velocities ({ R™u<l})

of all particles in a system at a given time ¢;.

In statistical mechanics, this is called a phase space point.
We shall call such a phase space point P(%), or simply P.

The ensemble of all the P, {P}, that we compute, is the sample of
thermodynamics states; it is a part of the corresponding thermodynamic
ensemble.

Since we obtain the sample by integrating the equations of motion (see
below), the sample is (a part of) the trajectory of the system.
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Let us assume that we know one phase space point P that belongs to
the ensemble of microstates compatible with the MACROSTATE we are
interested in.

(We just assume that we have this P, we don't know (yet!) how/where
to get it, how to generate it ... )

Reminder: we assume that our particles (= atoms or molecules) are
heavy enough and/or the temperature high enough so that the parti-
cles’ “de Broglie wavelength“ is small (compared e.g. with the particles’
dimensions), then we can replace the (time dependent) Schrodinger
equation for the particle motions by Newton’s equation.

(This is almost always true in “chemistry ”,

i.e. with masses > my and T ~ 300 K.)
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Example: Standard (NV E)-MD

We will now consider a system of NV particles,
restricted to a volume V
(i.e. the particle positions are all inside the volume).

We want to assume that we have one configuration P for our

N particles in this volume V).
We shall call it P(tg), it corresponds to some MACROSTATE (NV?).

Can we fully characterize the MACROSTATE?

Answer: Yes, because we know how to compute the total energy F of

P(to):
E = Etotal — T +V : T:Ecin : V:Epot

T we can compute because P(tg) contains all velocities
V' we can compute from our model because P(ty) contains all positions
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Thus P(ty) is one (micro)state compatible with the MACROSCOPIC
values of N, V' and FE.

We write the N Newton's equations for all particles ¢ in the configuration

7>(t0)2

. — .
m;-17; = —grad,V = F;, |, 1=1,23,...,N

= —
where m; is the mass of particle 7, R; its position, grad,V is the gradient

of V with respect to the coordinates of 7, and F_’; the force acting on 1.
(Note that this equation is for simple point masses.
If the particles are rigid bodies, the equations are more complicated.)

Imagine that we can somehow (not analytically) solve this system of N
214 order differential equations

starting from P(ty) (the initial conditions)

Then we could get after some time dt a new configuration P(tg + dt)
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So we have now:
P(tg) characterized by N, V| E

P(to + dt) characterized by:
N because Newton's equations do not change particle numbers

V' because the particles are always restricted to this volume
(We'll have to make sure that this is so — PBC)

E because the total energy is a constant of motion in a
Newtonian system without external interactions
and all the interactions in our model are internal to

the system (e.g. no external fields)

So if P(tp) is a microstate belonging to a certain MACROSTATE,
P(to + 0t) is also a microstate belonging to the same MACROSTATE.
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We are halfway there, yet
We still need to know:
(a) How to deal with the volume restriction

(b) How to deal with the integration of Newton's equations
(c) How to find P(ty)
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Question (a): Volume restriction
How to make sure that the particle positions are always restricted to
inside the volume V' 7

Answer: Use Periodic Boundary Conditions (PBC)
with the Minimum Distance Convention to compute the interactions

= (Almost) the same tricks are used in MC !

(In MD one needs to compute the interaction energies AND the forces
In MC ONLY the energies are needed)
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PBC
'basic box’

containing 'real’ particles

'periodic’ boxes
containing 'mirror’ particles

box centered on
. particle ¢ containing
Its interaction partners

(minimum distance
convention)
(] [ (]
. . . " cut-off” sphere around

'y ® 1 .
i
k and all £’

X

Interactive Java script:
http://research.chem.psu.edu/shsgroup/chemb647/project6/project6.html
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Advantages/consequences of periodic boundary conditions
and minimum distance convention:

1) There will always be IV particles in the basic box
(because if one particle, say k, leaves the box on one side
a mirror particle K’ will enter from the other side).

2) Each particle will be in the center of all its interaction partners
( )
The will thus be no surface at the limits of the red box
(nor anywhere else in the system)
In other words:
each particle sits in the center of all other particles
(as far as the computation of the interactions is concerned)
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Question (b): How to deal with the integration of Newton's equations?
What is actually the problem with the equations on page 517:

.o — —
mZ'F;: —gradz-V: —gradiV (771,772,773, ..... 777]\]) , 1= 1,2,3,...,N

The N 2nd order differential equations are all coupled through their
right hand sides.
There is no analytic solution® for this problem

(except in a few special cases e.g. — normal modes)

* Analytic solution: You can write the trajectory R;(t) of a particle ¢ as
some mathematical function, e.g.:

Ri(t) = A-cos(Q-t) + .... or whatever other function
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Answer (b): Do a numerical solution (numerical integration)

All numerical solutions are based in some way or other on series expansions.
|.e. (omitting the vector notation):

If you know 7;(t) and 7;(t) at some time t,

you can find to a good approximation 7;(t 4 dt) as (Taylor series):

1
ri(t+6t) = ri(t) + ()| - 6t + §i‘i(t)|t-5t2 +

and Newton's equation tells us that

1
7i(t)]e = — - grad;V = Fi(¢)

my;

for a small ot 0t is called the time step
The smaller 6t, the better your approximation (in principle!)

— We'll have to think how small/big to make our §t in practical cases

How to find 'good’ integration methods is studied in
numerical mathematics
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Question (c): How to find a suitable P(tg)?
(This is the most cumbersome of the 3 questions (a)-(c),
which is why we kept it until the end!)

Problems:

- Our MACROSTATES are characterized by N, V., E being constant
However, we usually do not know E for the system that we want to study.

- Even if we knew FE, we don't know how to "make” a P which has
exactly this energy.

- Finally, in a thermodynamic system, at constant composition, we can fix
3 quantities (here N, V, FE), all other quantities will fluctuate
(i.e. we should really write < T > for the temperature instead of T etc.)

Note: In the thermodynamic limit one can show that the results will
not depend on the ensemble if the 'conditions’ are the same, e.g.

ensemble: (NVE) with < T > = T will give the same results as:
ensemble: (NVT) with < E > =E
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Answer (c):
The figure shows how to proceed in principle to find a P(tg).

A
arbitrary constant total correction of

energy energy E of system kinetic energy
scale

arbitrary [U™
Zero

with correction of without correction of
Kinetic energy Kinetic energy

>
Time
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1) We "guess” a preliminary P(ty) (educated guesses preferred!).
2) We start the simulation (numeric integration).
3) The total energy E will be constant if we integrate correctly.
4) However, almost always, our guessed P(ty) will have too much
potential energy (interactions) compared to its kinetic energy.
5) The kinetic energy (o< temperature) will thus increase,
the potential energy decrease, first quickly, then more and more slowly.
6) If our system is well-behaved, it will approach a steady state.
(only fluctuations between kinetic and potential energy, no drift.)
7) Trouble! The MACROSTATE that we have is not at all the one
we wanted to study (usually much too much kinetic energy!).
8) We now remove kinetic energy from the system
(which is easy: scale the velocities)
and use the P that we have now reached as a new, better guess for P(ty)
9) We restart the simulation form the new P(ty) (GOTO 2)
until this P(tg) is really the one that we want

In this case, we forget this whole “equilibration procedure”
and start the real simulation.
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Note:
You cannot change the kinetic and potential energies independently
They are linked (Virial Theorem)

So whenever you have changed the kinetic energy (scaled the velocities)

you must wait for the potential energy to relax,
and vice versa
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Summary: Making the sample with MD

MD generates (in the simplest case) Ps for MACROSTATES character-
ized by:

- Constant number of particles IV,

- constant volume V,

- constant total energy F.

This ensemble is known (surprise! surprise!) as the (IV,V, E') ensemble, it
Is a sub-ensemble of the microcanonic ensemble of statistical mechanics.

Note: MD can be 'doctored’ to generate Ps representative of other en-
sembles.

Added value:

MD generates the Ps in a meaningful order.
The 'order parameter’ is the time ¢.

MD thus generates P(t1),P(t2), P(t3), P(ts),.... for increasing times
£ to. b3, ...
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in passing, more below after the end of the discussion of MD

MC generates only the position-part (the E;s) of P, let’s call it C,

for MACROSTATES characterized, in the simplest case, by:
- Constant number of particles IV,

- constant volume V/,

- constant temperature 7'

This ensemble is known (even bigger surprise) as the (IV, V,T") ensemble,
It is a sub-ensemble of the canonic ensemble of statistical mechanics.

MC generates the Cs in a random order.

Note:
MC can also be 'doctored’ to generate Cs representative of other ensem-
bles.
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Terminology:

P (generated by MD) is often called a point in the 6 - N-dimensional
Phase space.

C (generated by MC) is often called a point in the 3 - N-dimensional
Configuration space.

The term configuration is used both for P and C.
The (ordered) Ps are (a part of) the system trajectory
The list of all Ps is often called the history of the system.
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We now know how to generate a large number of microstates P for the
MACROSTATE we are interested in

— How do we know that the steady state that we have reached is
“thermal equilibrium”?

— How do we know that we have enough configurations and that
they are “representative“?

These are very difficult questions.

There is no way to decide them “a-priori”,

they have to be settled “a-posteriori™

by K)oking at various quantities computed from the simulated sample.

But first we must learn how to compute observables from the simulated
sample.
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From input to output through a huge amount of intermediate data

other sources

Kﬁ . / \ in some cases
oM Fit Model —» normal
molecular Energies d
. modes
- ab- > —> —® parameters
Hamiltonian INitio
DFT
prereeeee
simulation configurations
5 sample
P
MD history — > ———l 2
MC e
—> (in MD: B 222252221
trajectory) EEEEE »
Evaluations observables
averages
ety | e _>[ routine stuff ]
other input

This is the most interesting part
of molecular simulations
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Notes in passing:

—Some people have questioned whether first generating such a huge
amount of data and then whittling them down to a few 'observables’

qualifies as 'simple’
—Qthers have called simulation methods 'brute force’

—There is indeed no systematic way to 'improve’ (what does it mean?)
results (unlike e.g. the variational principle)

—However, simulations usually need fewer, and weaker, assumptions than
analytical methods

—In their philosophy, they are akin to experiments
- computer experiments -
and thus often allow 'trial and error’ approaches
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One problem has initially bothered people a lot:

The solution of differential equations (see harmonic oscillator)
depend on the initial conditions

So MD results will depend on initial conditions
— Is this good? Do we want this?
— Are there cases where we want this and others where we do not?

— What can we do to avoid it if we do not like it?
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Model 1 <= Observable 1

Model 2 <= QObservable 2

Model 3 <= Observable 3
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Model 1 <= Observable 1
Model 2 <= QObservable 2

Model 3 <= Observable 3

The simulation approach

/

<—> Qbservable 1
One model ! <« Observable 2

<—> Qbservable 3

Being able to compute observables consistently
Is one of the main advancements brought
about by computer simulations

IVISTEC Ph.A. Bopp & M.M. Probst 2018
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Consistency Ill: Consistent Coarse Graining

(&= Observable 1
One model ! <= Observable 2

Y
[} <— Observable 3

Coarse graining procedure

[} [ «—=  Observable 4

4

Coarse grained model Observable 5

|

Observable 6

!
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The representative MD sample is thus:

Sample = { r1,72,T3, ... N, U1,V2,V3,....,UN =
, T1,72,73,....'N, U1,V2,V3,....,0ny =1
, r,ro,r3,....ry, U1,02,03,...,UN t =2
, T1,T2,T3,....'N, U1,V2,V3,...,UN L=

e t =

. T1,72,T3,....TN, U1,VU2,V3,....,on t=M }
— di ) p’t(/mz)
_ {Rnuclei} {Rnuclei}

In the language of differential equations, this is the system trajectory
(which meanders through (i.e. samples) phase space)
we also call this the configurations, or the history

On the computer: several Mb or Gb of data

(In MC, it is the same except
no velocities and no time, and the {r} in random order)
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Statistical mechanics: compute thermodynamics averages from
the partition function, e.g. some observable A:

From @ (NVT)

1 —E(p,q)

Ap = — A(p,q) - exp dp dg

(A)r 0 ) (P, q) T
From Q2 (NVE)

1
(A)e =45 / A(p,q) - 6(E(p,q) — Eo) dp dg
all p,q

where ¢ stands for all positions variables (x1,y1, 21, 2.92, --...... L ZN)
and p for all velocity variables (VL1 UYLy eevernnnnnaaann JUZN)

So the integrals are 6 N-fold integrals ([ [ [ ...... [Jorsums (3 °>>>">"..)

over the (g, p)-space, phase space
= not really doable (except in some very simple cases)!
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Thermodynamic average from simulations

MD: (A)p =~ A(P)
’L'Wl
MC: (A)r =~ A(C)

where P; is the ith configuration from the sample in phase space
and C; is the 7th configuration from the sample in configuration space

(which contains only the positions, we'll come to this later)
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The Metropolis—Hastings algorithm

A Markov chain Monte Carlo method for obtaining a sequence
of random samples from a probability distribution for which
direct sampling is difficult.

The sequence can be used to approximate the distribution (i.e.,
to generate a histogram), or to compute an integral (such as an
expected value).
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History

Named after
- Nicholas Metropolis, author of
Equation of State Calculations by Fast Computing Machines (1953)
who proposed the algorithm for the specific case of the Boltzmann distribution

and W. Keith Hastings who extended it to the more general case in 1970.

There is controversy over the credit for discovery of the algorithm. Edward
Teller states in his memoirs that the five authors of the 1953 paper worked
together for "days (and nights)". M. Rosenbluth, in an oral history recorded
shortly before his death credits E. Teller with posing the original problem,
himself with solving it, and A.W. Rosenbluth (his wife) with programming the
computer. According to M. Rosenbluth, neither Metropolis nor A.H. Teller
participated in any way. Rosenbluth's account of events is supported by other
contemporary recollections. (from Wikipedia)
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THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines

Nicnoras METropoLis, ARIANNA W, RosENBLUTH, MARSHALL N. ROSENBLUTH, AND AvcustA H. TELLER,
Los Alamos Scienlific Laboratory, Los Alamos, New Mexico

AND

EpwaArp TeLLER,* Depariment of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial cocfficient expansion.

- see file metropolis-et-al-1953.pdf (original paper)
- See file
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The Metropolis—Hastings algorithm

Use a Markov chain that, at sufficiently long times, generates states that obey
the distribution P(x).

The Markov chain must fulfill the conditions ergodicity and balance.

A Markov chain generates a new state X,,, that depends only on the previous
state X..

The algorithm uses a proposal density which depends on the current state X,,
to generate a new proposed sample X.

Then X’ Is accepted as X,,, if a random number o (uniform between 0 and 1)
satisfies:

a <P(X') Q(X;X’) / P(X,) Q(X,;X’)

otherwise the new state is the old state: X,,; = X,
The procedure is then repeated, X,,, is renamed to X..
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The configuration space

A system of particles.

A state of the particles is described by a configuration w taken from the

configuration space Q (infinite/finite, continuous/discrete)
Example 1:

N interacting particles described by position and velocity of each in 3D.
Q is an part of of ROV,

Example 2:Surface with M adsorption sites that are occupied or free.
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Markov-chain

n b w @ dependent random variables

Our circle example:
X; = (XpYy) in [0 1]°

X=X+ Ax
If X“in [0 1]%, X=X, else X,,;=X,

IVISTEC Ph.A. Bopp & M.M. Probst 2018
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12-05-11
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Reminder: Accept uphill moves

exp(— Bov")

Always
accept

0 5, 5v

Fig. 4.5 Accepting uphill moves in the MC simulation.
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Example:2D-particles

We discuss in detail the program ‘metrol_surf_esimple_vl.m’
( Distributed in the word-document ‘Metropolis_mc_handout.docx’)
Technical details:

* Application: Atoms/molecules adsorbed on surfaces
e Equilibration

e Behaviour in dependence of T, system size, EP°, ...

. causes different equilibrium situations !

* Analysis of trajectories (next page)
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VISTEC ESE program
Scenario of a ‘crystal’ :

Random starting coordinates

=
s

Energy (very high at start)

-

5 F

5 =

= — o8] [#5] o= [S3] (23] — Los] [de]
T T T T T T T T T

CHE 501 academic year 2018/19

equilibrated after 15000 steps
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Energy (nearly) equilibrated after 15k steps
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Trajectory during equilibration Trajectory after equilibration
(useless to evaluate) (for property calculation)

IVISTEC Ph.A. Bopp & M.M. Probst 2018



Another application:
Crystal growth — discrete MC

island
step ad—atom

hole

kink site

vacancy
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Umbrella sampling

Improve sampling of a where ergodicity
is hindered by the form of the system's
energy landscape.
Example:
e Solid at its melting point:
e Order parameter Q,
liquid (low Q)
solid (high Q)
e Both are low in energy, but
separated by a gy barrier
e Prevents the simulation from
adequately sampling both phases.

CHE 501 academic year 2018/19
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Diffusion MC

See slides in file ‘Judy _chow DMC’
(nicht Stoff der LV)

IVISTEC Ph.A. Bopp & M.M. Probst 2018



Umbrella sampling

* w(rV)is a function chosen to promote configurations that
would otherwise be inaccessible to a Boltzmann-weighted
Monte Carlo run.

* w(r") may be chosen such that w = w(Q), taking high
values at intermediate Q.

* Boltzmann weighting is replaced by a potential chosen to
cancel the influence of the energy barrier present.
Markov chain distribution :

Ny _ w(rNYexp (=U(r")/kgT)
[ w(@™)exp (-U('™)/kgT)dr'™

7(r

Of course one must ‘calculate back’ (w subscript indicates values from the
umbrella-sampled simulation :

(A/W)w
(1/w)w

(A4) =
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Simulated Annealing

|Idea: Global optimization (avoiding local minima) by slowly lowering T !
Useful but sometimes the low efficiency is a problem.
A very rudimentary program: ‘siman.m’:

function siman
% demonstrating simulated annealing:
%

y=inline('x.*2+20*sin(x*10)+4*x"); % function

clf, xax=[ - 5:0.02:5]; p=plot( xax,y (xax),'blue");

set(p,'linewidth’,2); hold on;

T=10; naccept=0; xold =- 3; yold=y(xold);

for nmove=1:1000, % annealing loop
r=T*randn ; % random number
xnew=xold+r; ynew  =y( xnew);
ifyold -ynew >rand*T, % accept or reject

p=plot([xold xnew],[yold ynew],'k"); set(p,'linewidth’,2);
xold =xnew; yold =ynew; naccept=naccept+1,;

xold =xnew; yold =ynew; % keep old, calculate new
end%if
T=T*0.99; % reduce 'Temperature’
if mod(nmove,100)==1; disp ([ nmove naccept xold yold ]); end
end%for

VISTEC



Simulated Annealing

Starting from any position the global minimum is located in less
than 1000 steps:

60

a0 ”

n

30+ ” ﬂ J
zuﬂ n n | n | -
o 1N T u

ol T
20! UHU““H / U ! |

-30
-5
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Thermodynamic average from simulations

MD: (A)p =~ A(P)
’L'Wl
MC: (A)r =~ A(C)

where P; is the ith configuration from the sample in phase space
and C; is the 7th configuration from the sample in configuration space

(which contains only the positions, we'll come to this later)
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Part 3: results, results, results

Examples of thermodynamic averages routinely computed from MD-simulations
(all masses assumed to be equal to simplify the equations)

3

kaT 2
9 B >N

l\DIOJ

1N
Zv

z:1

l\DIOJ

We can compute this for all particles,
for selected particles (to check e.g. whether the system is in equilibrium),

for selected degrees of freedom (e.g. using only the v,s, vgs, v...s),
also combinations thereof, etc.etc.
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An important technique used here is binning (histograms)

Here one does several averages at the same time:

(n(A(z + Az)) g > 5(A; between A(z) and A(z+ Azx))

all configurations

i.e. a 1is added to the counter n(A(x + Ax) every time a value of
A; between A(x) and A(x 4+ Ax) is found in the configurations

We decide on a Az (the resolution) and study (na(x)), which, suitably
normalized, is the probability distribution (of A): pa(x)
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How to code this:

REAL A
INTEGER INDEX
REAL or INTEGER histogram(....), total number_of A

index = convert to_integer ( A / resolution + shift)
histogram(index) = histogram(index) + 1
total number of A = total number of A + 1

You have to make sure that your histogram does not overflow,
l.e. that no index larger or smaller than the array boundaries
of histogram appears during the computations

(Compilers can generate code to do this automatically, but then it runs
much more slowly)

You can then normalize the histogram to one:
LOOP OVER index
histogram(index) = histogram(index) / total_number_of A
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Histograms often computed in the equilibrium system:

Binning v, (vy, v,): we get a Gaussian
(width depending on the mass and the temperature)

Binning v2: we get the Maxwell-Boltzmann distribution
g g

Binning interparticle distances ry5(= 734)

(and normalizing correctly):

we get the radial pair distribution functions (rdf, g(r)),

which are important in many statistical mechanics theories,
(more about this later)

and can also be obtained (not so easily, but still)

from X-ray scattering, neutron scattering, electron scattering ....
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Note

N

R.p
nag(Rap) = 4m - 7ﬁ /0 rag 9op(rap) drag

Is the average number of neighbors of type 3 around a particle
of type a in a sphere of radius R,z (upper limit of integral).

Thus: g.g = gsa (from the definition) , but n.g # nga

So often it is more instructive to plot the n rather than the g.
Example: _
The average number of water molecules around an ion is meaningful

(the hydration number)
The average number of ions around a water molecule is much less intuitive
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As an aside

The g(r)s are so important
(many properties e.g. of liquids can be approximated
'in the 2-body approximation’ if one knows them)

People have tried, and in mani_cases succeeded,
in computing them without taking the detour through the

huge simulation ensemble (see above)
On thus tries to go straight from the pair potentials to the g(r)s

The methods are usually called 'integral equation theory’
more later (may be)
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The g-functions are related through Fourier transforms (FT)
to the experimental X-ray—, neutron— (elastic),
electron—scattering functions:

S(Q) x ) xawp fa fo (FT(gas(r) —1))

() scattering vector, also often called &

a, 3 types of atom in the system

x mole fractions

f factors that depend on the type of scattering and type of atom
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As we have seen, when we use MD to construct (a sample of) the
'microcannonical (NV E)' ensemble, we get, quasi 'for free’,
information about the time evolution of the system.

This can be studied 'in equilibrium’ and 'out of equilibrium’

The way to explore the evolution of things in the equilibrium ensemble”
Is to compute time-correlation functions

* Equilibrium does not mean that 'nothing moves’,

it is just that for macroscopic observables one has % =0
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So we extend the equation

to become

AOBW)E = 3737 20D A(P()) @ BIP( + 1)) = cas(t

crosscorrelation
® Is some operation, often a scalar product. _
Like previously, the i-sum can be over all or only over selected particles
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Example: velocity autocorrelation function C,, (t)

® will be a scalar product
So | can regroup all the A;(¢;) in a big vector V

for the time ¢:
V() = (wvxi(t),vyi(t),vz1(t), vaa(t), vya(t), vaa(t), vas(t),
vy3(t), vz3(t), cvrennnn. ;e (), vyn (t),vzn(t) )
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(the i-sum is already in the scalar product)
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The Fourier Transforms (FT) of correlation functions are called 'spectra’:

Cop(W) = f - / Cop(t) - cos(w t) dt = FT(cyy(t))

(It is enough to take the cosine since the (classical) correlation function
is even in time: Cyy(t) = cypu(—t) )
f is some factor that people chose differently.

A time-correlation function (time domain)

and a spectrum (frequency domain)

thus contain exactly the same information

(experimentally one may be much harder to get than the other)
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Molecular graphics

There are many (free and commercial) graphics programs that can 'read’
the configurations from MD (and MC) simulations and:

— draw graphic symbols of various kinds (colored spheres etc.) to show
the particle positions

— draw other symbols (e.g. lines) based on geometric criteria
(which it computes from the positions

— do some statistics _ _
Configuration from

_ _ MD-simulation
— make animations

544 water molecules

p=1gcm™3

— PBC, box-edge= 25.34A

—> exercises (T = 300 K)
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Part 4

'Other’ simulation (and other) methods

Sometimes molecular simulations either
- provide much more information than we need
- cannot be carried out meaningfully because of
— lack of information (model)
— lack of computational resources
— costs (industry)
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This can be addressed by:

- Applying different levels of theory to different parts of the problem

e.g. in QM/MM approaches
by coupling to 'cheaper’ methods
(normal modes, field equations on grids,....)
- Coarse graining
e.g. by removing (integrating over) the solvent
and treating only the solute
- Computing (with approximations) only certain quantities,
e.g. rdfs in integral theory approaches

We'll look briefly at these things in the reverse order

VISTEC



Let's look at the basic ideas of integral equation theory

We define a 'total’ pair correlation function as:
h(rij) = g(ri;) — 1

which goes to 0 for r large, as a correlation function should

which we divide up into a 'direct’ and and 'indirect’ part:

h(’l“lg) — C(Tlg) —+ JO / C(Tlg) . h(’l“gg) d’l“g

all particles 3

where the integral describes the 'indirect’ influence of particle 1 on particle
2 via particle 3.

(The g12-function results not only from the interaction of 1 with 2,

but also from all interactions between 1 and 3, and 3 and 2)

This is called the Ornstein Zernike (OZ) equation
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c(r;;) is called the 'direct correlation’ (p is the density)

Since we know neither h nor ¢
we need one more equation for any attempt to solve this.

This additional equation, an approximation, is called
the closure relation

There are several in the literature, among which:
the Percus Yevick approximation
the Hypernetted-chain equation

This is a very specialized field of statistical mechanics, and we shall not
dwell much on this here.

See the Wikipedia articles on these topics

See also prof. Wim Briels lecture:
http://cbp.tnw.utwente.nl/PolymeerDictaat/index.html
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The relation with the pair potential is made in the closure relation,
e,g, in HNC via the 'potential of mean force’ (PMF, W)

If one thinks of g(r) as a probability (distribution),
one can write some sort of 'Boltzmann factor’ (V1 /Ny = exp(—AFE/(kgT))

—Wij(ri5) )
kg1

gij(rij) = exp(

We note in passing

The PMF is often used in other contexts too.

When one has the g-functions, like in MD, it is simply
(beware the error bars)

computed by taking the logarithm of g(r)

Several thermodynamic quantities can be computed from WV
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We assume (see above, no ijs written))

- ~W -W-V)
_ total _ indirect _ _
c=g g exp(;—r) — exp(— )

and V is the pair potential

Fourier transform techniques are used to solve this
ONE DIMENSIONAL integral
— So even if the math is complected,

at the end it is fast on the computer

(i.e. get g-functions in minutes, not hours)
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'Removing’ the solvent: Brownian (and similar) Dynamics

This is of interest if we are interested in some 'big’ solute
(i.e. much bulkier, much heavier than the solvent molecules)
in a solutions

In this case, we are often not interested in the (fast) motions of the
little” solvent molecules

and it would thus be nice if they could somehow be removed from
the simulation

(there are usually many more solvent than solute molecules)

|dea:

Solve equations of motion only for the solute particles,

describe the influence of the solvent by:

— and 'effective’ solute-solute potential (cf. PMF W(r) )

— a friction term in the equations of motion

— an additional (stochastic, random)- force that balances the friction
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So the equation of motion becomes for a solute particle ¢

82Ti 1 (97“7;
oz o

M; = —grad; V + F;
In red the new terms:

— velocity dependent: friction

— additional force F to compensate the friction

The various methods

(Brownian Dynamics (BD), Dissipative Particle Dynamics (DPD) etc.)
differ in what they postulate for V), the friction and the compensating
forces.

) is a suitable solute-solute effective potential
(e.g. the PMF obtained from MD or MC simulations)

If the V, v and F are taken from molecular simulations,
this would be real 'coarse graining’
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Hybrid methods

See e.g.

Hybrid Particle-Continuum Methods in Computational Materials Physics
edited by M.H. Muser, G. Sutmann, and R.G. Winkler

Publication Series of the John von Neumann Institute for Computing NIC
Series Volume 46

available for free on the Internet

From the preface:

.., It [the book] covers subjects from modeling of hydrodynamic interac-
tions between particles in complex fluids or environments, through coarse-
grained descriptions of biological systems, to the coupling of atomically
represented regions with various continuum-based theories for fluids and
solids. Special aspects are long-time-scale properties of systems with slow
collective dynamics, ...
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Example:

Molecular Dynamics Meets Finite Elements:
An Approach for Coupled Simulations of Nanocomposites
S.Pfaller, G.Possart, P.Steinmann, M.Rahimi , M.C. Bohm, F. Muller-Plathe

Hybrid techniques bring together the advantages of particle-based and
continuum- based tools by coupling the different domains. In our ap-
proach, we aim to combine the efficiency of continuum mechanics with
the accuracy of MD simulations by applying the particle-based approach
only in regions of interest, e.g. in the vicinity of solid-polymer inter-
faces. The remaining parts are treated by continuum mechanics at a
much coarser resolution. Thus, a spatial decomposition into a particle
region and into a continuum is necessary.

However as Hans Agren (Stockholm) famously said:

QM-MM methods combine the disadvantages of QM
with the disadvantages of MM
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In the "hybrid" methods, where one uses a spatial decomposition,

e.g. QM 'inside’ and MM (i.e. mainly MD) 'outside’ (as in QM-MM)),
or

MD 'inside’ and continuum mechanics (e,g Navier-Stokes) ) 'outside’,

or
MD 'inside’ and BD 'outside’,
the main problems arise in the intermediate region:

How to couple the 'inside’ with the "outside’

This is an active area of current research
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summary

— Molecular simulations allow to link molecular properties with
macroscopic observables at finite temperatures

In most cases this cannot be treated by conventional theory
(i.e. analytical methods)

— Molecular simulations allow the consistent determination of many ob-
servables from from one model

— Molecular simulations are part of a well defined hierarchy of methods,
making thus coarse graining possible (if not easy!)

— Limitations are the space (MC and MD) and time (MD) domains that
can be explored.

— Computer time (and storage) still is, and always will be, a limitation
— pure brute force does not work, smart approaches are required
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Space-time window
accessible to molecular (MD) simulations
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100

30

&0

40

20

r 4 HYDRO
DYNAMICS

4

number of "particles’

increasingly

Slovgnocmax'at*ions

G 1 2 3 4 s

simulated time in Nanosekunden

’almost’ instantaneaous measurements (X-ray, spectroscopy)

IR, Raman, NMR

IVISTEC Ph.A. Bopp & M.M. Probst 2018



VISTEC, ESE program CHE 501 academic year 2018/19

analytical vs. predictive usage

A referee recently stressed in a comment:

.. the importance of carefully validating models before their applications ..’

However, this is more easily said than done:
— using simulations as an analytical tool — possible (and often done)
— using simulations as a predictive tool = — difficult at best

(if you do not want your result just

to reflect your prejudice)
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Books

P.W. Atkins, Physical Chemistry, XYth Edition, Oxford University Press
for general physical chemistry

D.A. McQuarrie, Statistical Mechanics, Harper & Row
for molecular partition function, equilibria, and everything on liquids

E. B. Wilson, J. C. Decius and P. C., Cross Molecular Vibrations
The Theory of Infrared and Raman Vibrational Spectra, Dover Books
THE classic on normal modes and vibrational spectra

C. Kittel, Introcuction to Solid State Physics, Wiley
The title says it all

R.K. Pathria (and P.D. Beale in later editions)
Statistical Mechanics, Elsevier
http://home.basu.ac.ir/“psu/Books/[Pathria R.K., Beale P.D.]
_Statistical_mechanics.pdf

for the introduction to the 'partition function’
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M.P. Allen, D.J. Tildesley,

Computer Simulation of Liquids, Oxford Science

detailed explanations of the fundamentals, with FORTRAN codes
http://www.ccl.net/cca/software/SOURCES/FORTRAN/
allen-tildesley-book/f.00.shtml

|.R. Levine, Quantum chemistry, Prentise Hall

one of my favorite QC books
http://www.slideshare.net/diegogarciadossantos/
0835quantum-chemistry-5th-edition-by-ira-n-levine

More free books at:
http://www.freebookcentre.net/Chemistry/
Quantum-Chemistry-Books.html
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