
CHE501 Computer lab:
Least-squares fitting

A. Standard example
B. Brief explaination
C. Exercises: Modifications to be performed
D. Solutions

Fitting: A. Standard example 1
You have the data
% COPY START
x=[0 1 2 3 4 5 6 8 9 10]';
y=2*[0.5,1.4,1.2,0.4,0.4,-0.3,0.2,1.1,0.1,0.6]';

% The following code fits a quartic polynomial to the data:
pexp=0:4; % powers
dm=x.^pexp; % construct the designmatrix
p=dm\y; % solve y=p0+p1*x+…; find the parameters

%Plot the datapoints and the polynomial :
xx=((min(x)-1):0.1:(max(x)+1))';% smooth x-points
yy=xx.^pexp*p; % corresponding y
plot(x,y,'o',xx,yy,'-', ...
'linewidth',2,'markersize',14);
% COPY END

You should get a picture like the one to the right:

B. Brief explanation:
 x and y are the data points, two column vectors.

 pexp is a vector with the powers of the polynomial, here [0 1 2 3 4]. We fit to a polynomial of the form

yfit = p0+p1*x+p2*x2+p3*x3+p4*x4d

Fitting means that we want to find the p values that give the best y values in this formula. ‘Best’ means here that

we minimize the standard deviation ∆=Σ(y-yfit)2 (Other criteria are also possible but we use this one)

 Linear fitting is always done by constructing a design matrix (https://en.wikipedia.org/wiki/Design_matrix). The

design matrix dm contains has the data points in the lines and the terms for which p is calculated in the columns.

 For obtaining p we have to solve the linear matrix equation y=p*dm with respect to p. If dm is a square matrix,

p=y*dm-1. This is hardly the case, though. In the general case, the so-called pseudoinverse of dm is a

generalization of dm-1. We ignore the details, and and just note that “dm\” (which is “/dm”, but reversed)

performs the operation. We have now p. , the best polynomial coefficients.

 For plotting the correspondence between the function and the data points we calculate yy from yfit=p*dm but

now with dm build from regularly spaced x values (xx) so that we get a smooth function. This is the red line.

Fitting: C. exercises
Could you reproduce the graph ? What are the values of p ?
Now you should modify the code according to the 5 points below. The necessary modifications are quite small.

1. What happens if the polynomial has only the powers 0,2,4 ? Do you get an acceptable fit ?
2. What happens if the polynomial has instead the powers 0 to 10 ? Do you get a good fit ? What is the problem ?
3. Can you also fit with polynomial powers that are not integers ? For example: 0,0.5,1 … 4 ?

Is there a problem ?
4. Can you also fit with sin functions instead of powers ? For example: y=p1*sin(x)+p2*sin(2x)+…pn*sin(5x) ?

Is there a problem ?
5. You have seen that the sin-terms do not reach the points ! Can you repair that ? Try it by allowing a shift :

y=p1+p2*sin(x)+p3*sin(2x)+… pn*sin(5x) ?

You can modify the code and directly copy your new code into the Octave window.

D. Solutions: Fitting exercises 1-5

• To be shown at the end id problems arose or
during discussions

Fitting exercise 1
What happens if the polynomial has only the powers 0,2,4 ?
Do you get an acceptable fit ?

x=[0 1 2 3 4 5 6 8 9 10]';
y=2*[0.5,1.4,1.2,0.4,0.4,-0.3,0.2,1.1,0.1,0.6]';

%The following code fits a polynomial with even powers up to 4 to the data:
pexp=0:2:4; % powers
dm=x.^pexp; % construct the designmatrix
p=dm\y; % solve y=p0+p1*x+…; find the parameters

%Plot the datapoints and the polynomial :
xx=((min(x)-1):0.1:(max(x)+1))';% smooth x-points
yy=xx.^pexp*p; % corresponding y
plot(x,y,'o',xx,yy,'-', ...
'linewidth',2,'markersize',14);

You should get a picture like the one to the right.
Clearly the fit is much worse. The answer is therefore ‘no’

Fitting exercise 2
What happens if the polynomial has the powers 0 to 10 ?
Do you get a good fit ? What is the problem ?

x=[0 1 2 3 4 5 6 8 9 10]';
y=2*[0.5,1.4,1.2,0.4,0.4,-0.3,0.2,1.1,0.1,0.6]';

%The following code fits a polynomial with even powers up to 4 to the data:
pexp=0:10; % powers
dm=x.^pexp; % construct the designmatrix
p=dm\y; % solve y=p0+p1*x+…; find the parameters

%Plot the datapoints and the polynomial :
xx=((min(x)-1):0.1:(max(x)+1))';% smooth x-points
yy=xx.^pexp*p; % corresponding y
plot(x,y,'o',xx,yy,'-', ...
'linewidth',2,'markersize',14); set(gca,'ylim',[-1 3]);

You should get a picture like the one to the right.
Clearly the fit is strange. The problem is ‘overfitting’.

Fitting exercise 3
Can you also fit with polynomial powers that are not integer ?
For example: 0,0.5,1 … 4 ? Is there a problem ?

x=[0 1 2 3 4 5 6 8 9 10]';
y=2*[0.5,1.4,1.2,0.4,0.4,-0.3,0.2,1.1,0.1,0.6]';

%The following code fits a polynomial with even powers up to 4 to the data:
pexp=0:0.5:4; % powers
dm=x.^pexp; % construct the designmatrix
p=dm\y; % solve y=p0+p1*x+…; find the parameters

%Plot the datapoints and the polynomial :
xx=((min(x)):0.1:(max(x)+1))';% smooth x-points
yy=xx.^pexp*p; % corresponding y
plot(x,y,'o',xx,yy,'-', ...
'linewidth',2,'markersize',14); set(gca,'ylim',[-1 3]);

You should get a picture like the one to the right.
Answer: Yes ! – why not ? Any function linear in the parameters (!) is ok.
But you must take care that x is ≥ 0, though.

Fitting exercise 4
Can you also fit with sin functions ? For example:
y=p1*sin(x)+p2*sin(2x)+… pn*sin(5x) ? Is there a problem ?

x=[0 1 2 3 4 5 6 8 9 10]';
y=2*[0.5,1.4,1.2,0.4,0.4,-0.3,0.2,1.1,0.1,0.6]';

%The following code fits a polynomial with even powers up to 4 to the data:
sinfac=1:5; % factors in the sinus terms
dm=sin(x.*sinfac); % construct the designmatrix
p=dm\y; % solve y=p0+p1*x+…; find the parameters

%Plot the datapoints and the polynomial :
xx=((min(x)-1):0.1:(max(x)+1))';% smooth x-points
yy=sin(xx.*sinfac)*p; % corresponding y
plot(x,y,'o',xx,yy,'-', ...
'linewidth',2,'markersize',14); set(gca,'ylim',[-1 3]);

You should get a picture like the one to the right
Answer again: yes ! – why not ? Any function linear in the parameters (!) is ok.
Here you see that the sin-terms do not reach the points – why ?

Fitting exercise 5
You have seen that the sin-terms do not reach the points !
Can you repair that ? Try it by allowing a shift : y=p1+p2*sin(x)+p3*sin(2x)+… pn*sin(5x) ?

x=[0 1 2 3 4 5 6 8 9 10]';
y=2*[0.5,1.4,1.2,0.4,0.4,-0.3,0.2,1.1,0.1,0.6]';

%The following code fits a polynomial with even powers up to 4 to the data:
sinfac=1:5; % factors in the sinus terms
dm=[x.^0 sin(x.*sinfac)]; % construct the designmatrix
p=dm\y; % solve y=p0+p1*x+…; find the parameters

%Plot the datapoints and the polynomial :
xx=((min(x)-1):0.1:(max(x)+1))'; % smooth x-points
yy=[xx.^0 sin(xx.*sinfac)]*p; % corresponding y
plot(x,y,'o',xx,yy,'-', ...
'linewidth',2,'markersize',14); set(gca,'ylim',[-1 3]);

You should get a picture like the one to the right
Yeah ! Now we can be happy ! But we should still check if less terms can also be used.

Fitting exercises
END (We have covered simple least-squares fitting).

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11

