CHE502 Chemical and Statistical Thermodynamics Homework 1

URL: http://theo.ism.u-bordeaux.fr/PBopp/vistec.2020.2021

A few (out of many possible) answers

Remember the GAUSSIAN/GaussView lab

What can we know about a molecule? And how?

Property	method	comment
molecular geometry	X-ray and neutron scattering	difficult, usually one has to use a crystal
(distances, angles)		which may change the geometry.
		With the usual X-ray wavelengths and neutron energies
		these techniques are better suited to intermolecular structures.
		Note: IR and Raman spectroscopy contain information about the molec-
		ular symmetry (via the "selection rules")
https://courses.lumenl	learning.com/introchem/chapt	er/determining-atomic-structures-by-x-ray-crystallography/
molecular geometry	quantum chemistry	This is the most frequent application of quantum chemistry.
		The Schrödinger equation (S.eq.) for the electrons is solved and the energy
		levels are found. The electronic wave functions ψ are also found
		Most codes (eg GAUSSIAN) can 'move' the nuclei (which are kept fixed
		when the S.eq. is solved)
		until the lowest possible electronic energy is found. This is then (usually)
		the equilibrium geometry of the molecule
"size"	X-ray indirect	usually from measurements in condensed phases
		(molecular radius $= 1/2$ distance between two atoms
electronic energies	visible, UV-vis, X-ray	The oldest types of <u>spectroscopy</u> ,
	spectroscopies	energies around 1 eV (10,000 $\rm cm^{-1}$ or so) and up
		also from quantum chemistry as differences between energy levels
		Energies, see http://halas.rice.edu/conversions
vibrational energies	IR (FTIR)	IR and Raman both 'see' the molecular vibrations
		can be measured very precisely in gases (\pm less than a cm ⁻¹
	variation of dipole moment μ	(also the intermolecular ones in condensed phases)
,	when the molecule vibrates	but differently (different selection rules)
	Raman	Vibrational energies can also be obtained from GAUSSIAN calculation by
		taking
	variation of polarizability	the 2nd derivatives of the energies
		+ a few (usually quite reasonable) assumptions
rotational energies	similar to vibrations,	can be measured quite precisely in gases
	but much smaller energies	Easy to calculate from the geometry (neglecting ro-vib couplings)
nuclear spin	NMR chemical shift	Chemical shift: measure changes in the energy levels of the nuclear spin
		of one atom as a function of the neighboring atoms
		Gaussian: yes, since we have ψ and thus ψ^2 at the location of the nucleus
		of interest. Same for 'NMR coupling constants'
	NMR relaxation	Gaussian NO, since this involves movements of the nuclei
		and GAUSSIAN knows nothing about movement (thus the trick needed
		for IR/Raman ie vibrations)
thermochemistry		
U, H, G	calorimetry	macroscopic property, say not much about the molecule itself
		GAUSSIAN produces these numbers with many assumption,
miscibility, boiling point,	macroscopic measure	see built-in module 'quantum-thermochemical extrapolation methods'
melting point,	statistical mechanics	\rightarrow chi501
phase transition enthalpy		

Electrostatic properties			
Dipole moment μ , higher multipoles	can be measured	can be calculated from ψ	
static and dynamic polarizabilities	with specialized instruments	often useful just to compare with experiment	
Electrostatic potential (ESP)	(ie not so easy)		
Ionization potential, electron affinity	ESP cannot be measured		
in condensed phases			
dielectric constants $\epsilon(0), \epsilon(\omega)$	stat. mech		
permittivity		$\rightarrow chi501$	

In all cases, measurements <u>and</u> calculations, one must always be aware of the uncertainties (error bars).

Certain quantities can be measured (and/or computed) with a high precision (uncertainties in the range of 1 in 1000 or so), others may have, for many reasons, much larger uncertainties

 \rightarrow always report your results with a number of decimal places in keeping with your uncertainty, and with the uncertainty:

eg 9.57 ± 0.02 not $9.57321456 \pm 0.0234...$ (specially for calculations, the computer will of course give you many decimal places, they probably mean nothing)