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Part 1: We try to remember (and extend a bit) CHE502

— a little bit of Quantum Mechanics (QM)

— a little bit of Statistical Mechanics

Part 2: Statistical Mechanics via molecular simulations
(MD & MC)

— Modeling

— A Few Necessary Approximations & Tricks

Part 3: Extracting Information from Simulations

— Statics (thermodynamics)

— Dynamics (kinetics)

Part 4: Other Simulation Methods

Part 5: Examples, Computer Lab
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Part 1 CHE502

— Quantum Mechanics
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Time independent Schrödinger Equation

Ĥ Ψi1,i2,i3,...(x1, x2, x3, ...) = Ei1,i2,i3,... · Ψi1,i2,i3,...(x1, x2, x3, ...)

Ĥ: 0 (describes the system (atom, molecule, ...))
Ψi1,i2,i3,...(x1, x2, x3, ...): Wavefunction, eigenfunction, also called state,

with n independent variables xj and n quantum numbers ij
Ei1,i2,i3,...: Energy eigenvalues

Hamiltonian Ĥ Eigenvalues E Eigenfunctions Ψ

particle in box En = h2/(8mL2) · n2, n = 1, 2, 3... Cosine

harmonic oscillator Ev = ~ω(v + 1/2) , v = 0, 1, 2, .. Hermite·Gaussian
rigid rotor El = ~

2/(2I)l(l + 1), l = 0, 1, 2... spherical harmonics (l,m)

hydrogenoid En = −R · 1/n2, n = 1, 2, 3... *

.... ...... ...
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— Statistical Mechanics

If we know (or can construct to a good approximations) all
(or at least a ”representative sample”) of the (micro-)states of a system
that are compatible with our macroscopic state
(e.g. NV E, NV T , NpT , µV T , ...)
then we can (in principle, if not practically) compute its partition function
(called Ω, Q (Z), Ξ, ...)

We have studied a few cases, where the ratio of partition functions
(= the equilibrium constant k of a gas-phase reaction)
can be obtained to a good approximation using only the first term of the
partition function
(i.e. only one of the very large number of possible states)

This is, however, quite exceptional, and in most cases we have to
do a more careful job.
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Q, the canonical partition function (sum of states Z)

Q =
∑

all states i

exp(
−Ei(N, V, T )

kBT
)

The average value 〈...〉 of any quantity (observable) A over the given
ensemble (NV E, NV T , etc.) is given by (just two examples):

〈A〉T =
1

Q

∫

all p,q

A(p, q) · exp
−E(p, q)

kBT
dp dq

where q stands for all positions variables (x1, y1, z1, x2.y2, ........, zN)
and p for all velocity variables (vx1, vy1, .................., vzN)

So the integrals are 6N -fold integrals (
∫ ∫ ∫

......
∫

) over the (q, p)-space,
which is called phase space
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From Ω (NV E), it is

〈A〉E =
1

Ω

∫

all p,q

A(p, q) · δ(E(p, q) −E0) dp dq (AvΩ)

In both cases (and in all other cases):
⇒ not really doable (too many

∫ ∫∫ ∫∫∫ ∫∫∫∫

... dx1dx2dx3d... dv1dv2d... )
⇒ simulations



8VISTEC, ESE program CHE 501 academic year 2020/21, page

Part 2 Basic Ideas

Instead of doing systematically all the
∫∫∫∫

over all the q and p,
we try to select beforehand those q and p which contribute markedly to
the integral for 〈A〉.

Doing this is a ”simulation”

→ We construct a sample of qs and ps compatible with our conditions
(NV E, NV T , etc.)

→ The computation of the averages is thus much simpler:
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Thermodynamic average from simulations (much simpler!)

MD : 〈A〉E =
1

N

N
∑

i=1

A(Pi)

( and for later : MC : 〈A〉T =
1

N

N
∑

i=1

A(Ci) )

where Pi (which stands for all the q and p) is called the ith configuration
(from the sample) in phase space
and Ci (all the q only) is the ith configuration (from the sample)
in configuration space)

⇒ more later
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Statistical Mechanics via MD-Simulations
Flowchart
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Each step needs critical thinking nothing is ’automatic’
there are no ’standard’ procedures (chemists,engineers, remember
this)
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- REMINDER: Born Oppenheimer (BO) approximation

Let’s look at a molecule.
Its Hamiltonian Ĥ will depend on the positions of the nuclei R and
electrons r,
and so will the Eigenvalues (energies) and Eigenfunctions (states)
let’s call them Ψ(R, r)
We do the usual product-ansatz (BO approximation):

Ψ(R, r) = ψelectronic(r) · ϕnuclei(R)

– Solving the equations for the electrons, at fixed positions of the nuclei
(which appear in the Hamiltonian of the electronic equation as parame-
ters) is the topic of quantum chemistry.
From this we get the Potential Energy Surface (PES)
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The Schrödinger equation for the nuclei can in many cases (but not al-
ways!) be replaced by classical mechanics (MD): Newton’s equation

For all masses larger than Hydrogen and
temperatures ≥ room temperature
classical mechanics (Newton’s equation) is a good approximation.

Hydrogen is ’borderline’ (de Broglie wavelength ≈ particle dimension)

Reminder: relation of QM to classical mechanics
the larger the mass, the higher the temperature, the more ’classical’,
see ”de Broglie (thermal) wavelength”:

λ =
h

p
, with p from < Ekin > ⇒ λ =

h√
2πmkBT
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Thus:

For each particle i : mi · ∂
2~r

∂t2
= ~Fi = − ~gradi(PES)

For N particles, this is a system of
– 3N coupled 2nd order partial differential equations, or
– 6N coupled 1st order partial differential equations

(coupled because ” ~gradi(PES)” depends also on all other particles j)

Before we discuss how to solve such differential equations,
we will deal with the description of the PES

PES = V (R) = V (R1, R2, R3, ....., RN)
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Interaction Models (PES) ⇔ CHE502,
some reminder and additional material below
(also called molecular Modeling, Force Field Development .....)
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PES, recap from a slightly different viewpoint:

We distinguish first between:
Inter– (between) and intra– (inside) molecular interactions

V total = V inter + V intra + V inter−intra ?
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Remember:
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(1) Intermolecular Interactions

Keywords:
Pairwise additive (or simply pair) potentials

Many-body potentials, polarizabilities and polarization

(2) Intramolecular Interactions

Keywords:
Internal coordinates (bond-stretch, angle-bend, torsion ...)

”bonded” and ”non-bonded” interactions

So why do we (usually) use different mathematical representations for the
inter- and intramolecular interactions (inter- and intramolecular PES) ?
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(1) Intermolecular

Usually this PES V is a function of many variables: V (r1, r2, r3, r4, ...)
(≈ 3N variables for N particles)
and one struggles to get a meaningful representation.

Example: Two Lennard-Jones (LJ) potentials V 1 and V 2
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Exploring a PES
in more than
1 dimension
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We discussed this already a lot in CHE502;
see also the little example (FORTRAN and gnuplot)
(scripting and plots with the gnuplot free software)
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describing a PES: “Salami tactics“

Put together V inter({Rnuclei
I }) from smaller pieces

({Rnuclei
I }=all nuclear coordinates)

(in some way like a LEGO )

However, there is a price (There is no free lunch!)
as we shall shortly see.

Most frequently made approximation:
The pair potential approximation
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The pair potential approximation

We will assume that:

V inter({Rnuclei
I }) =

∑

iα,jβ

Uij(rij)

where iα is a site on a molecule α and jβ is a site on a (usually different)
molecule β.
rij is the absolute value (modulus) of the distance between the two sites
i and j: rij = |~ri − ~rj |
Uij is the pair potential between the sites i and j.

The pair potential approximation is a very drastic assumption
so let’s look at it again very quickly since most of this was already dis-
cussed in CHE502
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Let us first assume that molecules are “rigid bodies“, i.e. that there are
no deformations, no intramolecular motions (vibrations) etc.
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10 types of pair potential Uij
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The question now is: How to find the different Uijs?

.. via the PES from quantum chemistry:

Step 1): You make many (≈ 100 - 1000) single point quantum chemical
calculations for ‘super-molecules‘ consisting of one red and one green
molecule with all possible mutual distances and orientations, keeping the
molecular geometries constrained.

Step 2): You chose sites on the molecule. In most cases, you locate the
sites on the atoms. Sometimes, you use one site for several atoms (e.g.
a CH2-group, or a CH3 group and such).
This is called the ”united atom” approach, see below.

Step 3): Once you have determined the sites, you know how many dif-
ferent site-site pair potentials Uij you will need.
You make an Ansatz∗ for the Uij

e.g.
Uij = electrostatic attraction or repulsion + short range repulsion + ...
∗ Ansatz, German word, plural Ansätze: What you put in initially in a

chemical reaction; what you start out with, assuming that it will work
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The most frequently used mathematical expression is:

Uij(rij) =
1

4πǫ0
·qi · qj

rij

+ 4·ǫij ·
(

(
σij

rij

)12−(
σij

rij

)6
)

= UCoulomb+ULennard−Jones

with
1

4πǫ0

a constant depending on which unit system you use,
qi and qj partial electric charges on the sites i and j
and ǫij and σij two (Lennard-Jones) constants depending on the type of
interaction (black-black, black-blue, blue-blue, etc.)

In our example (red and green molecules) we would thus have 4 different
partial charges qi (4 types of sites), 10 ǫijs and 10 σijs,
a total of 24 parameters.

Step 4): Determine these 24 parameters by fitting the 10 Uij Ansatz-
functions to reproduce as well as possible the 100-1000 interaction ener-
gies determines in Step 1 by quantum chemical calculations.
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Making these fits is difficult, and many tricks must be used.
Sometimes additional constraints must be applied
This is ongoing research work

We note that if we want to compute the total energy of an ensemble of
N molecules, each of which contains M sites, the total number of pair
interactions to compute will increase ∝ (N ·M)2 - a little something.
(Because every site will interact with every other site except itself and
sites on the same molecule.)

Let’s now ask:

What is the price of the ”pair potential approximation”?
i.e. What do we miss? What do we leave out? ...



27VISTEC, ESE program CHE 501 academic year 2020/21, page

Pair potential approximation

U(r
12

)

1 2

U(r
12

)

1 2

pair potential U unchanged 12(r    may change)

same or some

other pair potential

You miss the influence that a third particle (in blue) may have on the
(shape, strength, .... of the) interaction U between 1 and 2
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Summary: intermolecular interactions

In the pair potential approximation V inter will thus be a simple sum of
Us, and each U will depend only of the distance (rij = |~ri − ~rj |, i.e. a
scalar, not the vectors)
of only two sites i and j:

V inter =
∑

Uij(rij)
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→ ”Rigid” molecules are not always a reasonable approximation
(think e.g. of polymers)

So we need to describe the fact that molecules can
change their shape, vibrate, ......

This is done by means of intramolecular potentials V intra

(intra means “inside“)
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(2) Intramolecular interactions

Main features
Deep (compared to kBT ) potential wells
Stable molecules (no dissociation)

⇒ model potential can diverge at small and large values of the argument
(e.g. distance)

⇒ harmonic (bilinear) ansatz:

V intra =
∑

kij ρi ρj ρ = internal (or Wilson′s) coordinate

types of ρ : bond stretch : δr = ((rαβ) − (r0
αβ))

angle bend : δα = ((ααβγ) − (α0
αβγ)),

α, β, γ (adjacent) atoms (sites) on the same molecule;
torsion : δΘ = ((Θαβγδ) − (Θ0

αβγδ)),

α, β, γδ (adjacent) atoms (sites) on the same molecule;
0: equilibrium value
This is a generalization of the Hook’s law spring model

(→ Torsions : harmonic not always suitable. Why? )
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V intra =
∑

l≤m

flm · ρl · ρm

where flm is the force constant (or element of the F -matrix),
the ρ are Wilson’s internal displacement coordinates.
Warning: The sum goes either as written here (1-1, 1-2, 1-3, but not
2-1, 3-1, 3-2, ... (i.e. no double counting) ), but definitions vary.

Many ’types’ of ρ, here only 3 are given:

Type “stretch“: ρstretch = rij − r0
ij

Type “bend“: ρbend = αijk − α0
ijk

Type “torsion“: ρtorsion = φijkl − φ0
ijkl

where rij is the distance between two sites (here always site = atom!)
αijk is the angle between rji and rjk at atom j
φijkl is the angle between the plane defined by atoms i,j,k
and the plane defined by atoms j,k, and l
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Note:

1) You see that the definitions of the ρ already contain parameters,
the “equilibrium values“

2) You can easily extend V intra up to higher orders in ρ (anharmonicities):

V intra =
∑

l≤m

flm · ρl · ρm +
∑

k≤m≤n

kklm · ρk · ρl · ρm + ......

3) The computation of such V intra is “technically“ more complicated
than the simple sum or pair-potentials U , but
In our system with N molecules with M sites each,
we define a number of ρs between the M sites of each molecule,
say Mρ, and the total number of interactions to compute will be
N ·Mρ, which increases ∝ N

and not ∝ N2 (like intermolecular interactions)
when we increase the “system size“.
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4) Torsions:

If the barriers are not very hight compared to kBT , torsional potentials
should be written as something like:

V intra tors(ρ) ∝
∑

i

(cos(iρ) + 1)

 0  1  2  3  4  5  6

U
(ρ

)

ρ

Torsions

i=1 term 
i=3 terms

i=1+i=3 terms
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Let’s put everything together and write:

V total = V inter + V intra

and look at two examples:

- Various classes of models for CCl4
- Model potentials (models) for water

This can also be seen as an exercise in
coarse graining
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Example Modeling CCl4

U Σ= Pair potentials

 inter 
U Σ= Pair potentials

 inter 

intra
+ U 

simplest possible 

more sophisticated 

?

U =  Lennard−Jones 
inter 

rigid

flexible

3−body terms polarisation 
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Coarse-graining often involves replacing a feature by its average value

e.g. : united atom
replace several atoms (sites) by one pseudo-atom (site),
e.g.: CH3 = ”Me”, CH2= xx, CCl4 = carbon-tet (our example)

This saves a lot of computer time, e.g. for N CCl4-molecules :
≈ 25N2 interactions for the all-atom model
≈ N2 interactions for the united atom model

Difficulty: Which ’average’ to use?
Average energy (of some sort)? Average ’size’ (whatever that may be)?
Average ...?

Which is the ’correct’ radius ?



37VISTEC, ESE program CHE 501 academic year 2020/21, page

Intramolecular potential for water:

A) Define the internal coordinates:

ρ1 = rOH1
− r0

OH1
, ρ2 = rOH2

− r0
OH2

, ρ3 = αH1OH2
−α0

H1OH2

ρ1 and ρ2 are of type “stretch“, ρ3 is of type “bend“.
r0

OH1
= r0

OH2
≈ 0.98 Å,

α0
H1OH2

≈ 109 degrees.
(Other definitions are possible, we can also use more than 3 coordinates)

B) For symmetry reasons, the potential then must be written as:

V intra = f11 · (ρ2
1 + ρ2

2) + f33 · ρ2
3

+ f12 · ρ1 · ρ2 + f13 · ρ3 · (ρ1 + ρ2)

We have thus 4 independent constants (i.e. f11 = f22 etc.)
f11 is called the (diagonal) O-H stretching force constant (Hook’s law),
f33 is the (diagonal) HOH bending force constant,
f12 and f13 are the stretch-stretch and stretch-bend coupling constants,
respectively.



3838VISTEC, ESE program CHE 501 academic year 2020/21, page

In other terms (nomenclature more like the one used in spectroscopy):

Water, c2v symmetry, harmonic potential, thus:

ρ1 = δrO−H1
ρ2 = δrO−H2

ρ3 = δΘH1−O−H2

V (ρ1, ρ2, ρ3) = k11 · (ρ2
1 +ρ2

2)+k33 ·ρ2
3 +k12 ·ρ1 ·ρ2 +k13 · (ρ1ρ3 +ρ2ρ3)

↔ (ρ1, ρ2, ρ3) ·







k11 k12 k13

k12 k11 k13

k13 k13 k33






·







ρ1

ρ2

ρ3






(factors

1

2
!)

The matrix is called the F -matrix (!) (remember chi502)
(it is symmetric,
be careful, there are different ways in the literature to write this)
here it contains 4 independent constants k.
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Water: Models for the intermolecular interaction:

Just for water (H2O), there are probably about 50 reasonably good, but
quite different models in the literature.
They are known by acronyms like BNS, ST2, MCY, TIPS, TIP3P, TIP4P,
CF2, CF3, BJH, SPC, SPC/E, etc. etc. etc.

– ”rigid” (V intra replaced by constraints) or ”flexible” models
– 3, 4, 5 or more sites
– ”polarizable” (~µ ∝ ↔

α ~E) and ”non-polarizable”
– from Quantum-Chemical PES (ab-initio, DFT, ... of various qualities)
or fitted to reproduce certain properties
(structure (g(r)s), thermodynamics, phase diagrams, spectroscopy,
solvent properties, .......)
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One more reminder
If the potential is ’narrow’ (∆x small in the uncertainty relation)
the frequencies ω can still be obtained to a very good approximation
classically
(and then used to compute the ’quantum’ energy levels of this ’oscillator
system’, (i.e., for example, without diffusion) )

So if we have again a system of i = 1, ..., N interacting particles
(here via a very specific potential energy function)

mi

∂2~ri

∂t2
= ~gradiV = ~Fi , i = 1, N

Such a system of coupled

(because ~Fi depends in general not only on ~ri but also on all other ~rjs)
differential equations generally does not have ’analytical’ solutions
(Henri Poincaré)

However, in this particular case (⇒ ’harmonic’ problem), it has,
and the solutions are called ”normal modes”.
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Systems which have analytical solutions
(i.e. mathematical expressions, like sin(..), cos(...), exp(..), ...)
are called ’regular’ (or linear) systems,
the others are ’irregular’, non-linear’ or ’chaotic’

Studying non-linear systems is a branch of mathematics (chaos theory)

See ’normal modes’ in the supplementary material for the usual way to
study harmonic (a class of linear or regular) systems.
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Normal Modes

In some cases, Newton’s coupled differential equations of motion:

mi

∂2ri

∂t2
= gradiV = Fi , i = 1, N

do have an analytical solution.

The most famous case are ’normal modes’
(physicists talk about ’group coordinates’),
which exist ONLY if the right hand side
(rhs, i.e. the potential V and forces F )
have a very special form and the motions are ’infinitesimally small’ around
an extremum (usually minimum, however, → transition states).

Normal modes are a generalization of the well-know
harmonic oscillator problem
(which you have studied over and over)
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Reminder:

ω =

√

k

m
, Ev = ~ ω (v +

1

2
)

m: the mass; k: the force constant (2nd derivative of potential)
ω: frequency, v vibrational quantum number

( Note again the the frequency computed from classical mechanics is used
in the expression for the quantum energies)

Classical solution:

∆x(t) = A · cos(ωt) +B · sin(ωt) = C · cos(ωt+ δ)

∆x(t) = x(t)−x0: a displacement with respect to an equilibrium position
A,B,C, δ from the initial conditions
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for two masses m and M (and one ’spring’) on has:

ω =

√

k

µ
,

1

µ
=

1

m
+

1

M
, and still Ev = ~ ω (v +

1

2
)

Spring: Hooke’s law V (x) = k · (x− x0)2

(often written as V (x) = k/2 · (x− x0)2

For more masses and ’springs’, we generalize the springs as:

V =
∑

ij

kijρiρj (which can be expanded as V =
∑

kl

ckl u
x,y,z
k ux,y,z

l )

kij are (generalized) force constants (force field),
ρ internal (Wilson) coordinates (stretch, bend, torsion ...)
ux,y,z

k are (infinitesimally) small displacements
of particle k in x, y or z direction

Such a ’harmonic’ potential can be obtained by expanding any potential
around an extremum (minimum)
This is what the quantum chemistry codes do.
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With this potential (bilinear form) Newton’s equations of motion can be

solved analytically

(see Wilson, Decius and Cross)

and one gets for the motions of particle i:

~ri(t) − ~r0
i =

N
∑

J=1

AJ · ~QJ
i · cos (ΩJ · t+ δJ)

There are (if ....) N = 3N − 6 normal modes for a system (molecule)

of N masses, N = 3N − 5 for linear systems (molecules)

Aj and δJ are arbitrary amplitude and phase factors

(which depend on the initial conditions)

~QJ
i are vectors (the normal modes) describing the relative motion

of atom i under mode J .
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Properties of normal modes:

- All atoms i in a normal mode J move ’in phase’ (or anti-phase), the A

and δ depend only on J , not on i

- Normal modes are ’orthogonal’ (or adiabatic) to each other,

this means a mode J will not transfer vibrational energy to another mode

(you know that e.g. in molecules this is not entirely true)

- Normal modes are the main tool to assign and interpret

vibrational spectra (IR, Raman)

the symmetry of the normal modes is related to the selection rules

The quantum energies are, since the modes are independent:

Ev1,v2,v3,...,vN
= ~

(

Ω1(v1+
1

2
)+Ω2(v2+

1

2
)+Ω3(v3+

1

2
)+...+ΩN (vN +

1

2
)
)
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Beware:

Since normal modes are independent, i.e. do not exchange energy, a

normal mode system will not evolve toward thermodynamic equilibrium!

→ Your spectroscopy class
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In the general case,

i.e. when normal modes cannot be computed,

the eqs. of motion of an N-particle problem
MUST be solved numerically

→ MD-simulations

⇒ Statistical mechanics with partition function Ω

or avoid altogether solving equations of motions

→ MC-simulations

⇒ Statistical mechanics with partition function Q (Z)
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Simulations: MD and MC: A few (essential!) ”tricks”
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Let’s remember some of our goals

– study matter, mostly disordered condensed phases (e.g. liquids),

at finite temperatures, from a molecular (microscopic) standpoint

– understand the links between molecular properties and the

macroscopic observables

– study matter under conditions (pressure (density), temperature, ...)

not easily attainable in the laboratory

– try avoid as much as possible ’unnecessary experiments’

(e.g. in the pharmaceutical industry)

– gain some predictive power
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The properties of condensed matter

(e.g. its structure, internal energy, viscosity, diffusion, ...)

in particular at finite temperatures T > 0 K

cannot be related to the properties of a single molecule alone.

Such properties are properties of ensembles of many (how many?) molecules.

Many methods in theoretical chemistry consider only the

(potential) energies at T = 0 K an thus neglect the influence of the

kinetic energy (entropy).

This is sufficient in many cases, e.g. in reactions where the energy dif-

ferences between the reactants (educts) and the products are large.

Remember the examples from CHI502
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However, many reactions, e.g. in biology, are so fine-tuned that tem-

perature becomes a very important factor

and we need much better approximation to the partition function(s)

⇒ partition function approximated well enough by a single term

⇒ statistical mechanics

(Statistical mechanics

≈ statistical thermodynamics

≈ statistical physics

≈ many particle physics

≈ ... )
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– Molecular simulations (MD MC)
Molecular Dynamics (MD) , Monte Carlo (MC)

allow to go beyond simple (e.g. harmonic) potentials

and the few ’academic’ cases that can be treated ’analytically’

Basic idea of molecular simulations:

Since it is impossible to compute the partition functions (Ω, Q,Ξ ... )

(i.e. all states compatible with a set of external conditions (e.g. (NV E)),

we will construct a representative sample

This is called a simulation
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Here we shall briefly look at the two main simulation methods:

Molecular Dynamics (MD)

(Metropolis) Monte Carlo (MC)

(and there are several others, to be discussed if we have time)

Historical remarks:

Numerical work (e.g. MD, MC) was not possible before computer be-

came generally available (1970ies with some precursors

(Edward Teller, Bernie Alder ...) since the 1940ies (Manhattan Project))

Theoreticians were used to search for ’analytical solutions’

(i.e. finding mathematical solutions of

(usually differential or integral) equations)

Simulations required a different way of thinking,

they were thus often called computer experiments
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Basic Idea of MD (many of which also for MC)

We first remember, from classical mechanics:

If the potential V (and thus forces ~F ) in Newton’s equation depend ONLY

on the relative positions (~rs) of the particles

(and not e.g. on some ’external’ variables)

the total energy of this system (and the momenta)

will remain constant along the trajectory

(conservation of total energy, independently whether this trajectory can

be found analytically or not).

Quantities which remain constant along the trajectory (energy, momenta)

are called (first) ’integrals’ of the system

We will make use of this when we construct the (NV E) ensemble using

MD simulations.

In MC, we usually construct the (NV T ) ensemble
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However, many assumptions (and tricks) are common to MD and MC

(MC needs fewer, but also yields fewer results!)

We talk first mainly about MD and about MC later

Definitions:

In MD, we used the term configuration to designate the ensemble of the

nuclear positions ({Rnuclei}) and velocities ({Ṙnuclei})
of all particles in a system at a given time tj .

In statistical mechanics, this is called a phase space point.

We shall call such a phase space point P(t), or simply P.

The ensemble of all the P, {P}, that we compute, is the sample of

thermodynamics states; it is a part of the corresponding thermodynamic

ensemble.

Since we obtain the sample by integrating the equations of motion (see

below), the sample is (a part of) the trajectory of the system.
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Let us assume that we know one phase space point P that belongs to

the ensemble of microstates compatible with the MACROSTATE we are

interested in.

(We just assume that we have this P, we don’t know (yet!) how/where

to get it, how to generate it ... )

Reminder: we assume that our particles (= atoms or molecules) are

heavy enough and/or the temperature high enough so that the parti-

cles’ “de Broglie wavelength“ is small (compared e.g. with the particles’

dimensions), then we can replace the (time dependent) Schrödinger

equation for the particle motions by Newton’s equation.

(This is almost always true in “chemistry“,

i.e. with masses ≥ mH and T ≈ 300 K.)
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Example: Standard (NV E)-MD

We will now consider a system of N particles,

restricted to a volume V

(i.e. the particle positions are all inside the volume).

We want to assume that we have one configuration P for our

N particles in this volume V ).

We shall call it P(t0), it corresponds to some MACROSTATE (NV ?).

Can we fully characterize the MACROSTATE?

Answer: Yes, because we know how to compute the total energy E of

P(t0):

E = Etotal = T + V ; T = Ecin ; V = Epot

T we can compute because P(t0) contains all velocities

V we can compute from our model because P(t0) contains all positions
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Thus P(t0) is one (micro)state compatible with the MACROSCOPIC

values of N , V , and E.

We write the N Newton’s equations for all particles i in the configuration

P(t0):

mi·
..

~ri = −
−→

gradiV = ~Fi , i = 1, 2, 3, ..., N

where mi is the mass of particle i, ~Ri its position,
−→

gradiV is the gradient

of V with respect to the coordinates of i, and ~Fi the force acting on i.

(Note that this equation is for simple point masses.

If the particles are rigid bodies, the equations are more complicated.)

Imagine that we can somehow (not analytically) solve this system of N

2nd order differential equations

starting from P(t0) (the initial conditions)

Then we could get after some time δt a new configuration P(t0 + δt)
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So we have now:

P(t0) characterized by N, V,E

P(t0 + δt) characterized by:

N because Newton’s equations do not change particle numbers

V because the particles are always restricted to this volume

(We’ll have to make sure that this is so → PBC)

E because the total energy is a constant of motion in a

Newtonian system without external interactions

and all the interactions in our model are internal to

the system (e.g. no external fields)

So if P(t0) is a microstate belonging to a certain MACROSTATE,

P(t0 + δt) is also a microstate belonging to the same MACROSTATE.
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We are halfway there, yet

We still need to know:

(a) How to deal with the volume restriction

(b) How to deal with the integration of Newton’s equations

(c) How to find P(t0)
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Question (a): Volume restriction

How to make sure that the particle positions are always restricted to

inside the volume V ?

Answer: Use Periodic Boundary Conditions (PBC)

with the Minimum Distance Convention to compute the interactions

⇒ (Almost) the same tricks are used in MC !

(In MD one needs to compute the interaction energies AND the forces

In MC ONLY the energies are needed)



63VISTEC, ESE program CHE 501 academic year 2020/21, page

PBC

 y
 

 x 

i
j

kk’

k’

’basic box’
containing ’real’ particles

’periodic’ boxes
containing ’mirror’ particles

box centered on
particle i containing
its interaction partners
(minimum distance
convention)

”cut-off” sphere around
i

k and all k′

Interactive Java script:

http://research.chem.psu.edu/shsgroup/chem647/project6/project6.html
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Advantages/consequences of periodic boundary conditions

and minimum distance convention:

1) There will always be N particles in the basic box

(because if one particle, say k, leaves the box on one side

a mirror particle k′ will enter from the other side).

2) Each particle will be in the center of all its interaction partners

(green box)

The will thus be no surface at the limits of the red box

(nor anywhere else in the system)

In other words:

each particle sits in the center of all other particles

(as far as the computation of the interactions is concerned)
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Question (b): How to deal with the integration of Newton’s equations?

What is actually the problem with the equations on page 51?:

mi·
..

~ri= −
−→

gradiV = −
−→

gradiV (~r1, ~r2, ~r3, ....., ~rN) , i = 1, 2, 3, ..., N

The N 2nd order differential equations are all coupled through their

right hand sides.

There is no analytic solution∗ for this problem

(except in a few special cases e.g. → normal modes)

∗ Analytic solution: You can write the trajectory Ri(t) of a particle i as

some mathematical function, e.g.:

~Ri(t) = A · cos (Ω · t) + .... or whatever other function
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Answer (b): Do a numerical solution (numerical integration)

All numerical solutions are based in some way or other on series expansions.
I.e. (omitting the vector notation):
If you know ri(t) and ṙi(t) at some time t,
you can find to a good approximation ri(t+ δt) as (Taylor series):

ri(t+ δt) ≈ ri(t) + ṙi(t)|t · δt +
1

2
r̈i(t)|t · δt2 + .....

and Newton’s equation tells us that

r̈i(t)|t =
1

mi

· gradiV = FI(t)

for a small δt δt is called the time step
The smaller δt, the better your approximation (in principle!)

−→ We’ll have to think how small/big to make our δt in practical cases
How to find ’good’ integration methods is studied in
numerical mathematics
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Question (c): How to find a suitable P(t0)?
(This is the most cumbersome of the 3 questions (a)-(c),
which is why we kept it until the end!)

Problems:

- Our MACROSTATES are characterized by N, V,E being constant
However, we usually do not know E for the system that we want to study.

- Even if we knew E, we don’t know how to ”make” a P which has
exactly this energy.

- Finally, in a thermodynamic system, at constant composition, we can fix
3 quantities (here N, V,E), all other quantities will fluctuate
(i.e. we should really write < T > for the temperature instead of T etc.)

Note: In the thermodynamic limit one can show that the results will
not depend on the ensemble if the ’conditions’ are the same, e.g.
ensemble: (NVE) with < T > = T will give the same results as:
ensemble: (NVT) with < E > = E
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Answer (c):
The figure shows how to proceed in principle to find a P(t0).

constant total 
energy E of system

arbitrary
energy

scale

Time 

correction of 
kinetic energy

arbitrary
zero

with correction of
kinetic energy

without correction of
kinetic energy

Ekin

Utot
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1) We ”guess” a preliminary P(t0) (educated guesses preferred!).
2) We start the simulation (numeric integration).
3) The total energy E will be constant if we integrate correctly.
4) However, almost always, our guessed P(t0) will have too much
potential energy (interactions) compared to its kinetic energy.

5) The kinetic energy (∝ temperature) will thus increase,
the potential energy decrease, first quickly, then more and more slowly.

6) If our system is well-behaved, it will approach a steady state.
(only fluctuations between kinetic and potential energy, no drift.)

7) Trouble! The MACROSTATE that we have is not at all the one
we wanted to study (usually much too much kinetic energy!).

8) We now remove kinetic energy from the system
(which is easy: scale the velocities)
and use the P that we have now reached as a new, better guess for P(t0)

9) We restart the simulation form the new P(t0) (GOTO 2)
until this P(t0) is really the one that we want
In this case, we forget this whole “equilibration procedure“
and start the real simulation.
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Note:

You cannot change the kinetic and potential energies independently

They are linked (Virial Theorem)

So whenever you have changed the kinetic energy (scaled the velocities)
you must wait for the potential energy to relax,
and vice versa
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Summary: Making the sample with MD

MD generates (in the simplest case) Ps for MACROSTATES character-
ized by:
- Constant number of particles N ,
- constant volume V ,
- constant total energy E.

This ensemble is known (surprise! surprise!) as the (N, V,E) ensemble, it
is a sub-ensemble of the microcanonic ensemble of statistical mechanics.

Note: MD can be ’doctored’ to generate Ps representative of other en-
sembles.

Added value:

MD generates the Ps in a meaningful order.
The ’order parameter’ is the time t.

MD thus generates P(t1),P(t2),P(t3),P(t4), .... for increasing times
t1, t2, t3, ....
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in passing, more below after the end of the discussion of MD

MC generates only the position-part (the ~RIs) of P, let’s call it C,
for MACROSTATES characterized, in the simplest case, by:
- Constant number of particles N ,
- constant volume V ,
- constant temperature T .

This ensemble is known (even bigger surprise) as the (N, V, T ) ensemble,
it is a sub-ensemble of the canonic ensemble of statistical mechanics.

MC generates the Cs in a random order.

Note:
MC can also be ’doctored’ to generate Cs representative of other ensem-
bles.
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Terminology:

P (generated by MD) is often called a point in the 6 · N -dimensional
Phase space.

C (generated by MC) is often called a point in the 3 · N -dimensional
Configuration space.

The term configuration is used both for P and C.
The (ordered) Ps are (a part of) the system trajectory

The list of all Ps is often called the history of the system.
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We now know how to generate a large number of microstates P for the
MACROSTATE we are interested in

– How do we know that the steady state that we have reached is
“thermal equilibrium”?

– How do we know that we have enough configurations and that
they are “representative“?

These are very difficult questions.
There is no way to decide them “a-priori“,
they have to be settled “a-posteriori“
by looking at various quantities computed from the simulated sample.

But first we must learn how to compute observables from the simulated
sample.
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From input to output through a huge amount of intermediate data
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QM

initio
DFT
.......

ab−
Energies

Fit
Model

other sources

MD
MC

other input

parameters

sample

history

(in MD:

configurationssimulation

Evaluations

1

2

3

observables

molecular

Hamiltonian

  trajectory)

’on the fly’

in some cases

modes

normal

averages
routine stuff

This is the most interesting part
of molecular simulations
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Notes in passing:

–Some people have questioned whether first generating such a huge
amount of data and then whittling them down to a few ’observables’
qualifies as ’simple’

–Others have called simulation methods ’brute force’

–There is indeed no systematic way to ’improve’ (what does it mean?)
results (unlike e.g. the variational principle)

–However, simulations usually need fewer, and weaker, assumptions than
analytical methods

–In their philosophy, they are akin to experiments
- computer experiments -
and thus often allow ’trial and error’ approaches
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One problem has initially bothered people a lot:

The solution of differential equations (see harmonic oscillator)
depend on the initial conditions

So MD results will depend on initial conditions

– Is this good? Do we want this?

– Are there cases where we want this and others where we do not?

– What can we do to avoid it if we do not like it?
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Model 1 ⇐⇒ Observable 1

Model 2 ⇐⇒ Observable 2

Model 3 ⇐⇒ Observable 3
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Model 1 ⇐⇒ Observable 1

Model 2 ⇐⇒ Observable 2

Model 3 ⇐⇒ Observable 3

The simulation approach































⇐⇒ Observable 1

One model ⇐⇒ Observable 2

⇐⇒ Observable 3

Being able to compute observables consistently
is one of the main advancements brought
about by computer simulations
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Consistency III: Consistent Coarse Graining































⇐⇒ Observable 1

One model ⇐⇒ Observable 2

⇓
⇓ ⇐⇒ Observable 3

Coarse graining procedure
⇓































⇐⇒ Observable 4

⇓
Coarse grained model ⇐⇒ Observable 5

⇐⇒ Observable 6
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The representative MD sample is thus:

Sample = { r1, r2, r3, ....rN , v1, v2, v3, ..., vN t = 0
, r1, r2, r3, ....rN , v1, v2, v3, ..., vN t = 1
, r1, r2, r3, ....rN , v1, v2, v3, ..., vN t = 2
, r1, r2, r3, ....rN , v1, v2, v3, ..., vN t = 3
, .................................................. t = ...

, r1, r2, r3, ....rN , v1, v2, v3, ..., vN t = M }
= qi , pi(/mi)

= {Rnuclei} , {Ṙnuclei}

In the language of differential equations, this is the system trajectory
(which meanders through (i.e. samples) phase space)
we also call this the configurations, or the history

On the computer: several Mb or Gb of data

(In MC, it is the same except
no velocities and no time, and the {r} in random order)
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Statistical mechanics: compute thermodynamics averages from
the partition function, e.g. some observable A:

From Q (NV T )

〈A〉T =
1

Q

∫

all p,q

A(p, q) · exp
−E(p, q)

kBT
dp dq

From Ω (NV E)

〈A〉E =
1

Ω

∫

all p,q

A(p, q) · δ(E(p, q) − E0) dp dq

where q stands for all positions variables (x1, y1, z1, x2.y2, ........, zN)
and p for all velocity variables (vx1, vy1, .................., vzN)

So the integrals are 6N -fold integrals (
∫ ∫ ∫

......
∫

) or sums (
∑ ∑ ∑ ∑

..)
over the (q, p)-space, phase space
⇒ not really doable (except in some very simple cases)!
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Thermodynamic average from simulations

MD : 〈A〉E =
1

N

N
∑

i=1

A(Pi)

MC : 〈A〉T =
1

N

N
∑

i=1

A(Ci)

where Pi is the ith configuration from the sample in phase space
and Ci is the ith configuration from the sample in configuration space
(which contains only the positions, we’ll come to this later)
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Part 3: results, results, results

Examples of thermodynamic averages routinely computed fromMD-simulations
(all masses assumed to be equal to simplify the equations)

3

2
kBT =

3

2
m

( 1

N

N
∑

i=1

v2
i

)

=
3

2
m〈v2〉N

We can compute this for all particles,
for selected particles (to check e.g. whether the system is in equilibrium),
for selected degrees of freedom (e.g. using only the vxs, vθs, v....s),
also combinations thereof, etc.etc.
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An important technique used here is binning (histograms)

Here one does several averages at the same time:

〈n(A(x+ ∆x)〉E ∝
∑

all configurations

δ(Ai between A(x) and A(x+∆x))

i.e. a 1 is added to the counter n(A(x+ ∆x) every time a value of
Ai between A(x) and A(x+ ∆x) is found in the configurations

We decide on a ∆x (the resolution) and study 〈nA(x)〉, which, suitably
normalized, is the probability distribution (of A): pA(x)
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How to code this:

REAL A
INTEGER INDEX
REAL or INTEGER histogram(....), total number of A

A = ...........
index = convert to integer ( A / resolution + shift)
histogram(index) = histogram(index) + 1
total number of A = total number of A + 1

You have to make sure that your histogram does not overflow,
i.e. that no index larger or smaller than the array boundaries
of histogram appears during the computations
(Compilers can generate code to do this automatically, but then it runs
much more slowly)
You can then normalize the histogram to one:
LOOP OVER index
histogram(index) = histogram(index) / total number of A



87VISTEC, ESE program CHE 501 academic year 2020/21, page

Histograms often computed in the equilibrium system:

Binning vx (vy, vz): we get a Gaussian
(width depending on the mass and the temperature)

Binning v2: we get the Maxwell-Boltzmann distribution

Binning interparticle distances rαβ(= rβα)
(and normalizing correctly):
we get the radial pair distribution functions (rdf, g(r)),
which are important in many statistical mechanics theories,
(more about this later)
and can also be obtained (not so easily, but still)
from X-ray scattering, neutron scattering, electron scattering ....
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Note

nαβ(Rαβ) = 4π · Nβ

V
·
∫ Rαβ

0

r2
αβ gαβ(rαβ) drαβ

is the average number of neighbors of type β around a particle
of type α in a sphere of radius Rαβ (upper limit of integral).

Thus : gαβ = gβα (from the definition) , but nαβ 6= nβα

So often it is more instructive to plot the n rather than the g.
Example:
The average number of water molecules around an ion is meaningful
(the hydration number)
The average number of ions around a water molecule is much less intuitive
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As an aside

The g(r)s are so important
(many properties e.g. of liquids can be approximated
’in the 2-body approximation’ if one knows them)
People have tried, and in many cases succeeded,
in computing them without taking the detour through the
huge simulation ensemble (see above)

On thus tries to go straight from the pair potentials to the g(r)s

The methods are usually called ’integral equation theory’
more later (may be)
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The g-functions are related through Fourier transforms (FT)
to the experimental X-ray–, neutron– (elastic),
electron–scattering functions:

S(Q) ∝
∑

xαxβ fα fβ

(

FT(gα,β(r) − 1)
)

Q scattering vector, also often called k
α, β types of atom in the system
x mole fractions
f factors that depend on the type of scattering and type of atom
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As we have seen, when we use MD to construct (a sample of) the
’microcannonical (NV E)’ ensemble, we get, quasi ’for free’,
information about the time evolution of the system.

This can be studied ’in equilibrium’ and ’out of equilibrium’

The way to explore the evolution of things in the equilibrium ensemble∗

is to compute time-correlation functions

∗ Equilibrium does not mean that ’nothing moves’,
it is just that for macroscopic observables one has ∂

∂t
= 0
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So we extend the equation

〈A〉E =
1

N

N
∑

i=1

A(Pi)

to become

〈A(0)A(t)〉E =
1

Mj

1

N

N
∑

i=1

Mj
∑

j=1

A(P(tj)i) ⊗ A(P(tj + t)i) = cAA(t)

autocorrelation, or more generally

〈A(0)B(t)〉E =
1

Mj

1

N

N
∑

i=1

Mj
∑

j=1

A(P(tj)i) ⊗B(P(tj + t)i) = cAB(t)

crosscorrelation
⊗ is some operation, often a scalar product.
Like previously, the i-sum can be over all or only over selected particles
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Example: velocity autocorrelation function Cvv(t)

⊗ will be a scalar product
So I can regroup all the Ai(tj) in a big vector V
for the time t:

V(t) = ( vx1(t), vy1(t), vz1(t), vx2(t), vy2(t), vz2(t), vx3(t),

vy3(t), vz3(t), .........., vxN (t), vyN (t), vzN (t) )

a big 3N -dimensional vector, and one gets

〈v(0)v(t)〉E =
1

Mj

Mj
∑

j=1

(V(tj)) · (V(tj + t)) = cvv(t)

(the i-sum is already in the scalar product)
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The Fourier Transforms (FT) of correlation functions are called ’spectra’:

cvv(ω) = f ·
∫ ∞

0

cvv(t) · cos(ω t) dt = FT(cvv(t))

(It is enough to take the cosine since the (classical) correlation function
is even in time: cvv(t) = cvv(−t) )
f is some factor that people chose differently.

A time-correlation function (time domain)
and a spectrum (frequency domain)
thus contain exactly the same information
(experimentally one may be much harder to get than the other)
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Molecular graphics

There are many (free and commercial) graphics programs that can ’read’
the configurations from MD (and MC) simulations and:

– draw graphic symbols of various kinds (colored spheres etc.) to show
the particle positions

– draw other symbols (e.g. lines) based on geometric criteria
(which it computes from the positions

– do some statistics

– make animations

– ...

=⇒ exercises

Configuration from
MD-simulation

544 water molecules

ρ=1 g cm−3

→ PBC, box-edge= 25.34Å

(T = 300 K)
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Part 4

’Other’ simulation (and other) methods

Sometimes molecular simulations either
- provide much more information than we need
- cannot be carried out meaningfully because of
– lack of information (model)
– lack of computational resources
– costs (industry)
– .....



97VISTEC, ESE program CHE 501 academic year 2020/21, page

This can be addressed by:

- Applying different levels of theory to different parts of the problem

e.g. in QM/MM approaches

by coupling to ’cheaper’ methods

(normal modes, field equations on grids,....)

- Coarse graining

e.g. by removing (integrating over) the solvent

and treating only the solute

- Computing (with approximations) only certain quantities,

e.g. rdfs in integral theory approaches

We’ll look briefly at these things in the reverse order
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Let’s look at the basic ideas of integral equation theory

We define a ’total’ pair correlation function as:

h(rij) = g(rij) − 1

which goes to 0 for r large, as a correlation function should

which we divide up into a ’direct’ and and ’indirect’ part:

h(r13) = c(r12) + ρ ·
∫

all particles 3

c(r13) · h(r23) dr3

where the integral describes the ’indirect’ influence of particle 1 on particle

2 via particle 3.

(The g12-function results not only from the interaction of 1 with 2,

but also from all interactions between 1 and 3, and 3 and 2)

This is called the Ornstein Zernike (OZ) equation
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c(rij) is called the ’direct correlation’ (ρ is the density)

Since we know neither h nor c

we need one more equation for any attempt to solve this.

This additional equation, an approximation, is called

the closure relation

There are several in the literature, among which:

the Percus Yevick approximation

the Hypernetted-chain equation

This is a very specialized field of statistical mechanics, and we shall not

dwell much on this here.

See the Wikipedia articles on these topics

See also prof. Wim Briels lecture:

http://cbp.tnw.utwente.nl/PolymeerDictaat/index.html
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The relation with the pair potential is made in the closure relation,

e,g, in HNC via the ’potential of mean force’ (PMF, W)

If one thinks of g(r) as a probability (distribution),

one can write some sort of ’Boltzmann factor’ (N1/N2 = exp(−∆E/(kBT ))

gij(rij) = exp(
−Wij(rij)

kBT
)

We note in passing

The PMF is often used in other contexts too.

When one has the g-functions, like in MD, it is simply

(beware the error bars)

computed by taking the logarithm of g(r)

Several thermodynamic quantities can be computed from W
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We assume (see above, no ijs written))

c = gtotal − gindirect = exp(
−W
kBT

) − exp(
−(W − V )

kBT
)

and V is the pair potential

Fourier transform techniques are used to solve this

ONE DIMENSIONAL integral

→ So even if the math is complected,

at the end it is fast on the computer

(i.e. get g-functions in minutes, not hours)
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’Removing’ the solvent: Brownian (and similar) Dynamics

This is of interest if we are interested in some ’big’ solute

(i.e. much bulkier, much heavier than the solvent molecules)

in a solutions

In this case, we are often not interested in the (fast) motions of the

’little’ solvent molecules

and it would thus be nice if they could somehow be removed from

the simulation

(there are usually many more solvent than solute molecules)

Idea:

Solve equations of motion only for the solute particles,

describe the influence of the solvent by:

– and ’effective’ solute-solute potential (cf. PMF W(r) )

– a friction term in the equations of motion

– an additional (stochastic, random)- force that balances the friction
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So the equation of motion becomes for a solute particle i

Mi · ∂
2ri

∂t2
+ γ · ∂ri

∂t
= −gradi V + Fi

In red the new terms:

– velocity dependent: friction

– additional force F to compensate the friction

The various methods

(Brownian Dynamics (BD), Dissipative Particle Dynamics (DPD) etc.)

differ in what they postulate for V , the friction and the compensating

forces.

V is a suitable solute-solute effective potential

(e.g. the PMF obtained from MD or MC simulations)

If the V , γ and F are taken from molecular simulations,

this would be real ’coarse graining’
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Hybrid methods

See e.g.

Hybrid Particle-Continuum Methods in Computational Materials Physics

edited by M.H. Müser, G. Sutmann, and R.G. Winkler

Publication Series of the John von Neumann Institute for Computing NIC

Series Volume 46

available for free on the Internet

From the preface:

,,, It [the book] covers subjects from modeling of hydrodynamic interac-

tions between particles in complex fluids or environments, through coarse-

grained descriptions of biological systems, to the coupling of atomically

represented regions with various continuum-based theories for fluids and

solids. Special aspects are long-time-scale properties of systems with slow

collective dynamics, ...
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Example:

Molecular Dynamics Meets Finite Elements:

An Approach for Coupled Simulations of Nanocomposites

S.Pfaller, G.Possart, P.Steinmann, M.Rahimi , M.C. Böhm, F. Müller-Plathe

Hybrid techniques bring together the advantages of particle-based and

continuum- based tools by coupling the different domains. In our ap-

proach, we aim to combine the efficiency of continuum mechanics with

the accuracy of MD simulations by applying the particle-based approach

only in regions of interest, e.g. in the vicinity of solid-polymer inter-

faces. The remaining parts are treated by continuum mechanics at a

much coarser resolution. Thus, a spatial decomposition into a particle

region and into a continuum is necessary.

However as Hans Ågren (Stockholm) famously said:

QM-MM methods combine the disadvantages of QM

with the disadvantages of MM
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In the ’hybrid’ methods, where one uses a spatial decomposition,

e.g. QM ’inside’ and MM (i.e. mainly MD) ’outside’ (as in QM-MM),

or

MD ’inside’ and continuum mechanics (e,g Navier-Stokes) ) ’outside’,

or

MD ’inside’ and BD ’outside’,

the main problems arise in the intermediate region:

How to couple the ’inside’ with the ’outside’

This is an active area of current research
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summary
– Molecular simulations allow to link molecular properties with

macroscopic observables at finite temperatures

In most cases this cannot be treated by conventional theory

(i.e. analytical methods)

– Molecular simulations allow the consistent determination of many ob-

servables from from one model

– Molecular simulations are part of a well defined hierarchy of methods,

making thus coarse graining possible (if not easy!)

– Limitations are the space (MC and MD) and time (MD) domains that

can be explored.

– Computer time (and storage) still is, and always will be, a limitation

=⇒ pure brute force does not work, smart approaches are required



108VISTEC, ESE program CHE 501 academic year 2020/21, page

Space-time window
accessible to molecular (MD) simulations

 IR, Raman, NMR 

’almost’ instantaneaous measurements (X−ray, spectroscopy)
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 IR, Raman, NMR 

’almost’ instantaneaous measurements (X−ray, spectroscopy)

BD

increasingly 
coarse−grained
models
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 IR, Raman, NMR 

’almost’ instantaneaous measurements (X−ray, spectroscopy)

BD

coarse−grainedSlow relaxations     
increasingly 

models
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analytical vs. predictive usage

A referee recently stressed in a comment:

”.. the importance of carefully validating models before their applications ..”

However, this is more easily said than done:

– using simulations as an analytical tool → possible (and often done)

– using simulations as a predictive tool → difficult at best

(if you do not want your result just

to reflect your prejudice)
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Books

P.W. Atkins, Physical Chemistry, XYth Edition, Oxford University Press

for general physical chemistry

D.A. McQuarrie, Statistical Mechanics, Harper & Row

for molecular partition function, equilibria, and everything on liquids

E. B. Wilson, J. C. Decius and P. C., Cross Molecular Vibrations

The Theory of Infrared and Raman Vibrational Spectra, Dover Books

THE classic on normal modes and vibrational spectra

C. Kittel, Introcuction to Solid State Physics, Wiley

The title says it all

R.K. Pathria (and P.D. Beale in later editions)

Statistical Mechanics, Elsevier

http://home.basu.ac.ir/˜psu/Books/[Pathria R.K., Beale P.D.]

Statistical mechanics.pdf

for the introduction to the ’partition function’
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M.P. Allen, D.J. Tildesley,

Computer Simulation of Liquids, Oxford Science

detailed explanations of the fundamentals, with FORTRAN codes

http://www.ccl.net/cca/software/SOURCES/FORTRAN/

allen-tildesley-book/f.00.shtml

I.R. Levine, Quantum chemistry, Prentise Hall

one of my favorite QC books

http://www.slideshare.net/diegogarciadossantos/

0835quantum-chemistry-5th-edition-by-ira-n-levine

More free books at:

http://www.freebookcentre.net/Chemistry/

Quantum-Chemistry-Books.html

I have some of these books as pdf files


