
Topic:
Modeling the molecular interactions



• Without PES no chemistry and no molecules:
• every ‘Molecule’ would be different (its energy 

would not only depend on its geometry but also on 
its history.

• The Born-Oppenheimer – approximation states that a 
PES exists.

• But: one PES for each electronic state.
• The PES allows a eine topographical interpretation of 

reactions and conversions of molecules.
• Next slide

The PES of a molecule (cluster …) 



To remember: Relations

Molecular vibrations act on 
the

Hypersurface of the potential energy (PES)of 
one, more… molecules, clusters … a system) 

The elektronic Schrödinger 
equation (Hartree-Fock , DFT…) 

can be used to obtain (the)

and other properties 

Which is needed to …

( via the nuclear Schrödinger equation

or classically )

… calculate everything



The PES of a molecule (cluster …) 



Modeling the molecular 
interactions - general

• The potential energy in an N-particle  
system V = f(r) must be expressed in 
some tractable way since it needs to 
be known and it needs to be 
calculable.

• It can either be calculated quantum 
mechanically or be derived from a 
mathematical expression (‘energy 
formula’) that includes some physics.



Modeling the molecular 
interactions - general

Which energy formulas are useful ?
• For rij=0, Eij should be  ∞

• … not fulfilled by exp(-a rij)
• For rij=∞, Eij should be 0

• … not fulfilled by a polynomial in rij
• Normally, Eij should have none or one minimum

• No minmum → repulsion
• One minimum → attraction

• Sometimes but rarely, Eij has one maximum
(and therefore how many minima ?)



Modeling the molecular 
interactions - general

(discuss Electron-electron interaction
Long- and short range, Energy vs. force …



The potential energy in the pair 
approximation:

• The total energy is then:
( ji … pairs of molecules
lm … interaction centers in pair ij
k … term in sum over 1/r powers )

k
lm

tot k
rij lm k

a
=∑ ∑ ∑V

In the pair approximation one assumes that the total energy is a 
sum of pairwise interactions. For example, if Eij is set to be a sum 
of ak/rk terms: 



The potential Energy V

• The pair approximation needs 
distances as input:
Angular → Radial
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Functional forms: 

Sutmann chapter 2



Modeling the molecular interactions
Deficiencies of the pair approximation:

The pair approximation is a truncation of the energy 
expression:

E=f(i)+f(ij)+f(ijk)+f(ijkl)…
the pair term is always the most important … 
… but unfortunately the series converges slowly

• Polarisability normally what causes the largest deviation from 
the pair approximation

• Charge transfer 
• Directional effects (bonds)

Polarisability concepts, examples for going beyond the pair 
approximation, …



Discussion: polarisation



Potential Energy Functions II:
step-by-step



(1) What it is about …

Potential functions



Chemistry/
Physics



Chemistry/
Physics

Experiment Theory



Chemistry/
Physics

Experiment Theory

Analytical Theory



Chemistry/
Physics

Experiment Theory

Analytical Theory Simulations



Chemistry/
Physics

Experiment Theory

Analytical Theory Simulations

QC, CPMD etc. MM,MC,MD - classical



Chemistry / 
Physics

Experiment Theory

Analytical Theory Simulations

QC, CPMD etc. MM,MC,MD - classical

Potential functions





Chemistry / 
Physics

Experiment Theory

Analytical Theory Simulations

QC, CPMD etc. MM,MC,MD - classical

Potential functions

Slightly
different



An analytical potential 
function is an expression 
for the total energy of a 
system as function of the 
atomic coordinates.

Potential functions



Why does one need them ?
(in the context of molecular simulations)

Potential functions



Properties via Simulations ?

• A system consists of n particles. (Atoms, 
molecules, ions ...).
Their behavior results from their electronic 
structure which governs the interaction 
between them (their attraction and 
repulsion).

• A potential energy function E which is a 
scalar function of the coordinates of the 
particles is containing all this in is containing 
all information about these interactions.

• How can one calculate macroscopic 
properties from E ?



( Macroscopic properties could be, for 
example:

- the pressure p=ƒ(V), 
- average geometries at a given 

temperature or 
- (vibrational, electronic) spectra ?

• This is normally not possible in a simple 
way.

• One needs MD simulations because of 
the lack of analytical formulas.
There are no formulas like ‘p=nRT / V’
for properties of real systems.



• Therefore, there are two problems
• The first one is the potential energy 

function Epot=f(X).
• Experience (of the last 30 years) has 

shown that quantum chemistry is a 
powerful tool to tackle the problem of 
the potential energy function.

• The second problem is the calculation 
of properties if Epot=f(X) is known. 
Computer simulations (especially MD) 
can do this numerically.



• (2)
The general scheme of fitting quantum chemically 
derived data to analytical expressions:
How to get a potential function



i.E. Lennard-Jones

Potential functions
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Potential functions
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For a water molecule interacting with i.E. an
atomic ion I+ there would be 3 such terms:



We can write the formula slightly different
so that it becomes a polynomial in 1/r:
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We need different parameters A,B for the interaction between I+-O and
I+-H but the two I+-H interactions have the same parameters A,B.
The total interaction energy is:



We have now the 7 parameters

• In general, a set of atoms in a certain environment (like H in H2O which,
for example, is different from H of CH4) is called a ‘class’.
In this example, atoms and classes are the same. 

• The q – parameters are class-specific parameters for which good 
values often can be calculated via so-called ‘population analysis’,
(atomic partial charge analysis), a standard quantum chemical 
method.

• The A and B – parameters are class-pair specific parameters that can be
calculated via fitting to quantum chemical energies.

, , , , , ,O HI O I O I H I H I
A B A B q q q+ + + + +− − − −

Hq





To consider:

• Many orientations and distances
• Scanning a 3-dimensional (in the example)

or 6-dimensional (in the general case) 
space.

• Computationally demanding
• The energy is linear in the A, B –

parameters in
a polynomial expression. Expressions like
‘exp(-C r)’ are also commonly used, where 
this is not the case.



(3) The (non)additivity of interactions

• A formula like 

describes the interaction 
between the ion and water. If 
we have many water 
molecules, can we simply say:
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• If we do so, we use the so-called 
pair approximation.



(4)
An example (where the pair 
approximation is used):

Interaction between Be2+ / I-
and DMSO:



After the construction of 
the potential energy 
function, it must be 
checked.

• Example for I-:

-14 kcal/mol →
∞



(5)
Another example (beyond 
the pair approximation)

The pair approximation is 
often not good enough, 
especially for 
ion-ligand 
interactions:



AlCl3 in water with the following 
potential energy function:
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Chemistry/
Physics

Experiment Theory

Analytical Theory Simulations

QC, CPMD etc. Potential functions

Pairwise additive nonadditive

E=Σf(rij)+Σf(rijk)+Σf(rijkl)+... ∞-order many-body

Electrical PolarisationOther iterative schemes



Ways to deal with nonadditive interactions:
The point-dipole model (PDM):

E=0 E=E(r)

q1

q2

q3

q1

q2

q3

E=0 E=E(r)

q1

q2

q3

q1+dq1

q2+dq2

q3 +dq3 

dq1 + dq2 + dq3 = 0 

Atomic polarizabilities αi are assigned to some
molecular site and the electric field induces the
formation of a point dipole µi

The fluctuating charge model (FQ):

Charges are allowed to fluctuate according to the electronic
properties of the molecule as atomic electronegativity and 
atomic hardness.



Comparison of the behaviour of 
these ‘polarisation models’:
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Example:
Li+ ion near
Carbon
Tetrachloride



Conclusion:

Induced dipole moments (=polarization) can be large.
The effect on the electrostatic energy can be large

(keep in mind, however, that Li+ ion near carbon
tetrachloride is an extreme example.)



Modeling the molecular interactions:
The reality for everyday systems

Normally one divides between:

• Inter- and 
• intramolecular interactions



Modeling the molecular interactions
Inter- and intramolecular interactions

Why distinguish between them ?
- In the ideal case, no difference
- In reality:

- Equal treatment leads is difficult/expensive
- Examples

- UFF
- Central force model of water
- Reactive potentials

- Why is it advantageous to differenciate ?
- Bond breaking is difficult to describe
- Angular (3body) and 4-body terms are natural and needed 

in a network of bonded atoms (A-B-C-D)
- but difficult and less necessary between non-bonded atoms 

(H2O-M++-OH2)



1) Typical intermolecular energy functions (=force field) 

intermolecular
interactions

intramolecular
nonbonded

torsional

bond stretch

valence angle
bend



Every atom will be affected by the potential 
energy functions of every atom in the system.
Either from
• Bonded Neighbors
• Non-Bonded Atoms

(=other atoms in the same molecule or 
atoms from different molecules)

bondednonbonded EERV −+=)(



2) Non-Bonded Atoms

In the simplest case, there are three types of 
potential energy which we need to consider for the 
interaction between non-bonded atoms:

• Repulsion of electron shells
• van der Waals Potential
• Electrostatic Potential

ticelectrostaWaalsdervanrepulsionbondednon EEEE ++= −−−



Repulsive (~r-12) and van der Waals (~r-6)  
potential terms:

The Lennard-Jones form is a compromise between 
accuracy and fast computability.
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versions, accuracy, deficits, 
improvements, physical foundations



Electrostatic 
Potential
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Bonded Atoms

There are three types of 
interaction between 
bonded atoms:

• Stretching along the bond
• Bending between bonds
• Rotating around bonds

bondalongrotatebendanglestretchbondbonded EEEE −−−− ++=
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Side issue:
the electrostatic energy in a crystal: 
Ewald



Ewald force

en.wikipedia.org/wiki/Ewald_summation



Sketching the Ewald potential
(discuss TV shape, infinity considerations, convergence, 



Sketching the Ewald potential
(discuss TV shape, infinity considerations, convergence, 

Ewald
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[x y]=meshgrid(0:0.1:pi);
z1=sin(x).^2.*cos(y).^2;
subplot 121
[a,b]=contour(z1);
set(b,'linewidth',3); axis 
square
title('Ewald');
z2=(x-pi/2).^2+(y-pi/2).^2;
subplot 122
[c,d]=contour(z2);
set(d,'linewidth',3); axis 
square
title('Coulomb');



Reaction field:

simpler, not periodic, equally good as Ewald
Also useful in quantum chemistry



Bond breaking
In many instances, potentials where bonds can break 

are needed.
For example (the so-called Tersoff-Abel potential):
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