SUMMARY OF WEEK 1

- \Rightarrow microscopic phenomena cannot be described by classical physics
- partcile-wave dualism, discrete energies (spectra), photoelectric effect
- Schrödinger equation is the suitable description
- \rightarrow energy levels (eigenvalues), ZPE, 'wave'functions (interferences)

quantum mechanics \rightarrow classical mechanics

when m and T large (for 'free' systems ie. ZPE $\langle k_{\rm B}T \rangle$

 \Rightarrow In chemistry (ie at energies $E=k_{\rm B}T$ with $T\approx 100...1000~{\rm K}$)

Born-Oppenheimer approximation : treat electrons and nuclei separately

- \Rightarrow Electronic Schrödinger Eq. ("Quantum chemistry" (ab-initio. DFT))
- \rightarrow compute electronic ground state energies and determine PES
- \Rightarrow fitting

(what does a "fit" mean, inter- and extrapolation, overfitting)

$\Rightarrow \text{PES}$

intra- and intermolecular PESs, minima, transition points ...

- \rightarrow find suitable ansatz functions (models) to represent a PES eg. LJ model, (more LATER)
- ⇒ Nuclei: mostly classical mechanics (m and T large enough) (except molecular vibrations because ZPE too high (Δx too small, see particle in box or harm.oscil.) (more LATER)

Week 2

 \Rightarrow How to deal with many particle (molecule) systems (condensed phases, liquids, solids ...)

LJ: Lennard-Jones PES: Potential Energy Surface ZPE: Zero Point Energy